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Abstract

In this Thesis, we will construct a continuous time model for a two wage-earners who are

trying to find an optimal strategies concerning consumption, investment, life-insurance

purchase and best welfare selection. Assuming correlated lifetimes for the two wage-

earners, we consider a stochastic optimal control problem for each wage-earner before

and after the first death. We assume that both wage-earners contribute in a social welfare

system, have access to a financial and life-insurance markets. We use Copula model as

stochastic mortality model for dependent lives, to handle the stochastic optimal control

problems under consideration. For each stochastic optimal control problem, we use

dynamic programming principle to derive a nonlinear second order partial differential

equation, known as Hamilton-Jacobi-Bellman (HJB) equation, whose solution is the

objective functional for the problem under consideration. Assuming special class of

discounted constant relative risk aversion (CRRA) utilities we find an explicit solutions

for possible cases with more details.
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Chapter 1

Introduction

We consider the problem of a two wage-earners having to make selections about

strategies: consumption, investment, life-insurance purchase and social security system

over the interval of time [0,min{T, τi}] where

• T is a fixed time in the future and representing the common retirement time of

the two wage-earners.

• τi is a random variable and representing the death time of the wage-earner i where

i = 1, 2.

Each of the wage earners have income at a continuous rate Ii(·), i = 1, 2 and when the

wage-earner retires or dies this income ends, whichever happens first. Furthermore, we

assume that each wage-earner participates in social security with the aim of protecting

his family in the future, maximize the value of his legacy in the case of premature death,

or the value of his wealth at retirement date T if he lives that long.

Several optimization problem containing personal consumption and life-insurance pur-

chase Yaari [46] in 1956, who showed that a wage-earner with an uncertain lifetime and

a fixed stock of resources should purchase an annuity contract to insure against the

risk. Marshall [28] presented some derivations of a multivariate exponential distribu-

tion. One of these derivations assumes the residual life is independent of age, and other

derivations are based on classical models of dependent lives which called common-shock

models. These models assume that the dependence of lives arises from an exogenous
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event that is common to each life. For example, in lifetime analysis this shock may

be an accident or the onslaught of a contagious disease. Yaari work was extended by

Hakansson [15] to model of firm under risk. Merton in [29, 30] focused on the optimal

consumption, investment but without life-insurance. Richard in [41] generalized the

work of Merton [29, 30] to include the life-insurance in a continuous-time model for an

uncertain lived wage-earner.

Frees et al [11] studied the use of dependent mortality models to value type of annuity,

discussed a broad class of parametric bivariate survival models using a bivariate sur-

vivorship function called a Copula. Moore and Young [32] studied possible strategies

to insurance wage-earner in a continuous-time model. Ye [47] examined the intertem-

poral model of optimal consumption, life-insurance purchase and portfolio rules for an

individual whose lifetime is uncertain in a quite complex continuous-time economy.

The work done by Luciano et al [27] used Copula and common-shock model to studied

the stochastic mortality of couples. In the same year, Kraft and Steffensen [22] stud-

ied problems about consumption and insurance model in a continuous-time multi-state

Markovian framework. A Markov model assumes that the probability depends only on

the current time and the state occupied, that is, it is independent of the past given

the present value (that is, it assumes the Markov property). Kwak et al [24] inves-

tigate an optimal portfolio, consumption and retirement decision problem in which a

wage-earner can determine the discretionary stopping time as a retirement time with

constant labor wage and disutility. Additionally, Bruhna and Steffensen [3] developed a

continuous-time Markov model for maximization problem using power utility function of

a two-person household. Ji et al [21] in (2011) studied joint life mortality risk evaluation

and management in the Markovian framework.

Recently in (2011), Kwak et al [25] investigate an optimal investment, consumption and

life-insurance decision problem of the family with a one breadwinner (a parent) and one

dependent (a child) using hyperbolic absolute risk aversion (HARA) utility functions.

Using HARA specification effectively impose the axiomatic condition that instantaneous

consumption rate must be above a lower bound while the breadwinner is alive and after

his or her death. Pirvu and Zhang [40] studied optimal investment, consumption and life-

insurance acquisition strategies for an individual who uses an expected utility criterion

with discounted Constant Relative Risk Aversion (CRRA) type preferences. CRRA is an

increasing and strictly concave utility function U with the property −cU
′′(c)

U ′(c) is constant.

Later on, Bayraktar and Young [2] studied the optimal amount of life insurance for

a household of two wage-earners. Kwak et al [23] studied the portfolio decisions of a

wage-earner under inflation risks. Park and Jang [38] studied an optimal consumption

2



and portfolio selection problem of an individual who wants to voluntarily retire someday

in the future. Mousa et al [34] studied the problem faced by a wage-earner whose aim

is to maximize consumption and investment within a diminishing basket of K goods in

a financial market model involved of one risk-free security and an arbitrary number of

risky securities.

Mousa et al [35] studied the optimal life-insurance within a market contains many life-

insurance companies using dynamic programming techniques to find an explicit solution

in the case of discounted CRRA utility functions in a continuous-time model for one

wage-earner. Han et al [16] studied the portfolio decisions of a wage-earner under in-

flation risks. In (2022) Mousa et al [33] introduced an optimization problem of finding

the optimal life-insurance strategies for a wage-earner with an uncertain lifetime in a

financial market involived one risk- free security and one risky security whose prices

evolve according to linear diffusions process. After that Hoshiea et al [18] introduced a

modified version of Merton’s continuous lifetime model [29, 30] where the welfare policy

is being a new control variable in the problem, and find an explicit solution using CRRA

utilities, in the case where the social welfare system consist of only one welfare provider.

Wei et al [45] in (2020) studied another optimization problem to determine the optimal

consumption, investment and life-insurance purchase strategy for a two wage-earners

with related lifetimes. Based on the work of Wei, in this Thesis, we will try to find

the optimal strategies concerning consumption, investment, and life-insurance purchase

for the two wage-earners within optimal welfare market. Having access to the welfare

market imposes an additional control involved in the dynamics of the problem under

consideration. In this work we will analyse paper [45] with more details.

3



Chapter 2

Preliminaries

2.1 Basics in probability and stochastic processes

In this section we will introduce some definitions and results in probability and stochastic

processes, that will be used later.

Definition 2.1. [14] Probability theory

Probability theory describes mathematical models of random phenomena, primarily from

a theoretical point of view.

Definition 2.2. [14] Random experiment

A random experiment is an experiment that can be repeated and the future outcomes

cannot be exactly predicted even if the experimental situation can be fully controlled.

Definition 2.3. [9] Sample space

The sample space Ω is any a set that lists all possible outcomes of some unknown random

experiment or situation, and any x ∈ Ω is called sample point.

Definition 2.4. [9] Event

The event is defined as any subset of the sample space Ω.

Definition 2.5. [7] σ-algebra

If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets of Ω with the

following properties

1. ϕ ∈ F .
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2. F ∈ F =⇒ F c ∈ F , where F c = Ω \ F is the complement of F in Ω.

3. A1, A2, · · · ∈ F =⇒
⋃∞

i=1Ai ∈ F .

Definition 2.6. [7] Measurable space

A measurable space is a pair (Ω,F) for which F is a σ-algebra on the space Ω.

Definition 2.7. [7] F-measurable sets

The subsets A of Ω which belong to F are called F-measurable sets.

Definition 2.8. [7] Probability measure

A probability measure P on measurable space (Ω,F) is a function P : F → [0, 1] such

that

1. P(∅) = 0 and P(Ω) = 1.

2. If A1, A2 . . . ∈ F and {Ai}∞i=1 are disjoint (i.e. Ai ∩Aj = ∅ if i ̸= j) then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) .

Definition 2.9. [7] Probability space

The triple (Ω,F ,P) is called a probability space for which F is a σ-algebra on the space

Ω and a probability measure P.

Example 2.1. [7] Let Ω = {a1, a2, . . . , an} be a finite set, and suppose we are given

numbers 0 ≤ pi ≤ 1 for i = 1, . . . , n, satisfying

n∑
1

pi = 1.

Assume F contains all subsets of Ω. For each set

A = {ai1 , ai2 , . . . , aim} ∈ F ,

where 1 ≤ i1 < i2 < . . . im ≤ n, we define

P (A) = pi1 + pi2 + · · ·+ pim .

Definition 2.10. [7] Complete probability space

A probability space is complete if F contains all subsets G of Ω with P-outer measure

zero, i.e. with

P∗(G) := inf{P(A);A ∈ F , G ⊂ A} = 0.

5



Definition 2.11. [7] σ-algebra generated by U
Given any family U of subsets of Ω, there is a smallest σ-algebra HU containing U ,
namely

HU =
⋂

{H;H σ − algebra of Ω, U ⊂ H},

we call HU the σ-algebra generated by U .

Definition 2.12. [7] Borel sets

If U is the collection of all open subsets of a space Ω, then B = HU is called the Borel

σ-algebra on Ω and the elements B ∈ B are called Borel sets.

Definition 2.13. [7] F-measurable

If (Ω,F ,P) is a given probability space, then a function Y : Ω → Rn is called F-

measurable if

Y −1(U) = {ω ∈ Ω; Y (ω) ∈ U} ∈ F ,

for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn).

Definition 2.14. [9] Random variable

A random variable is a function from the sample space Ω to R .

Definition 2.15. [7] n-dimensional random variable

Let probability space (Ω,F ,P). A random variable is a function X : Ω → Rn which is

measurable in the sense that the inverse of a measurable Borel set B in Rn is in F . That

is

X−1(B) = {ω ∈ Ω; X(ω) ∈ B} ∈ F .

Definition 2.16. [9] Indicator function

If G ∈ F is any event, then we can define the indicator function of G, written 1G, to be

the random variable

1G(s) =

1, if s ∈ G,

0, if s /∈ G,

which is equal to 1 on G, and 0 on Gc.

Definition 2.17. [8] Almost surely

We say the property hold almost surely if its hold except for some event with probability

zero (usually written as “a.s.”).

Definition 2.18. [37] Almost everywhere

A property that holds for all x ∈ A \ M , where M is a set of measure zero, is said to

hold almost everywhere.
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Definition 2.19. [9] Conditional probability

The conditional probability of event A given event B where P (B) > 0 is defined as

P(A|B) =
P(A ∩B)

P(B)
.

Definition 2.20. [9] Independent

A and B are called independent events if

P(A ∩B) = P(A)P(B).

Definition 2.21. [7] Expectation

If ∫
Ω
X(ω)dP(ω) < ∞,

then the number

E[X] =
∫
Ω
X(ω)dP(ω),

is called the expectation of X on Ω.

Definition 2.22. [7] Expectation of independent random variables

Let random variables

X,Y : Ω → R,

where

E[X] < ∞,

and

E[Y] < ∞,

then X,Y are called independent if

E[XY] = E[X]E[Y].

Definition 2.23. [7] Stochastic process

A stochastic process is a collection of random variables

{Xt}t∈T ,

defined on a probability space (Ω,F ,P) and assuming values in Rn. We denote by X(·)
for the stochastic process to express the randomness in X.

Definition 2.24. [7] Parameter space T

The parameter space T is usually the half line [0,∞) but it may also be an interval [a, b],

7



the non-negative integers or subsets of Rn for n ≥ 1.

Definition 2.25. [7] Sample path

For each t ∈ T fixed we have a random variable

ω → Xt(ω) ; ω ∈ Ω,

fixing ω ∈ Ω we can define the function

t → Xt(ω) ; t ∈ T,

which is called a sample path of Xt.

Definition 2.26. [37] Measurable stochastic process

Let a stochastic process {Xt}t∈T on a probability space (Ω,F ,P), this process is measur-

able if the mapping

(t, ω) → Xt(ω)

is measurable with respect to the σ-algebra B(T ) × F , where B(T ) is the family of all

Borel subsets of T .

Definition 2.27. [14] Filtration

Given a probability space (Ω,F ,P). A filtration is a sequence {Ft : t ≥ 0} of increasing

sub-σ-algebras of F which means that

F0 ⊂ F1 ⊂ · · · ⊂ Ft ⊂ Ft+1 ⊂ · · · ⊂ F .

If t is interpreted as (discrete) time, then Ft contains the information up to time t.

Definition 2.28. [7] Ft-adapted

Given {Ft}t≥0 be an increasing family of σ-algebras of subsets of Ω. A process

g(t, ω) : [0,∞)× Ω → Rn

is called Ft-adapted if for each t ≥ 0 the function

ω → g(t, ω)

is Ft-measurable.

Definition 2.29. [14] Natural filtration

A sequence {Xn, n ≥ 0} of random variables is {Fn}-adapted if Xn is Fn-measurable

for all n. If Fn = σ {X0, X1, X2, . . . , Xn} then we called the sequence adapted, and

{Fn, n ≥ 0} is the natural filtration.
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Definition 2.30. [4] Progressively measurable

A stochastic process (Xt)t∈R+ defined on a filtered probability space (Ω,F , {Ft}t∈R+ ,P)
is progressively measurable relative to filtration {Ft}t∈R+ if the function

(s, ω) ∈ [0, t]× Ω → X(s, ω),

is (B ([0, t])⊗Ft )-measurable for all t ∈ R+.

Definition 2.31. [4]Predictable real-valued process

A real-valued process is named predictable relative to filtration {Ft}t∈R+ , if the function

R+ × Ω → R,

is measurable relative to the σ-algebra generated by the same filtration.

Remark 2.1. [8] Given a probability space (Ω,F ,P) and suppose X : Ω → Rn is a

random variable. And let x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn. Then x ≤ y iff

xi ≤ yi, ∀i = 1, . . . , n.

Definition 2.32. [8] Distribution function

Given a random variable X, then the distribution function of X is the function

FX : Rn → [0, 1],

defined as

FX(x) := P(X ≤ x) , ∀x ∈ Rn.

Definition 2.33. [36] Cumulative distribution function

The cumulative distribution function (cdf) of any random variable X is the function

FX : R → [0, 1],

defined as

FX(x) := P(X ≤ x) , ∀x ∈ R.

Definition 2.34. [14] Joint distribution function

The joint distribution function of random variable X is

FX1,X2,...Xn(x1, x2, . . . xn) = P(X1 ≤ x1,X2 ≤ x2, . . .Xn ≤ xn),

for xk ∈ R, k = 1, 2, . . . , n.
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Definition 2.35. [8]Density function

Given a random variable X : Ω → Rn and FX its distribution function. If there exists a

non-negative, integrable function f : Rn → R such that

FX(x) = FX1,X2,...Xn(x1, . . . , xn) =

∫ x1

−∞
. . .

∫ xn

−∞
f(y1, . . . , yn) dyn . . . dy1,

then f is called the density function for X.

Definition 2.36. [8] Continuous of real valued random variable

A real valued random variable X is called continuous if its distribution function can be

expressed as the integral FX(x) =
∫ x
−∞ f(y)dy, where f is the density of X.

Definition 2.37. [14] Marginal distribution function

The marginal distribution function of continuous random variable X at the point x is

obtained by adding the values of the marginal probabilities to the left of x

FX(x) = P (X ≤ x, Y < ∞) =

∫ x

−∞

∫ ∞

−∞
fX,Y (u, v)du dv,

the marginal density function is given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy.

Definition 2.38. [8] Conditional expectation

Given a probability space (Ω,F ,P) and suppose U is a σ-algebra, U ⊆ F . If X : Ω → Rn

is an integrable random variable, then the conditional expectation is

E[X | U ],

to be any random variable on Ω such that

1. E[X | U ] is U-measurable.

2.
∫
AXdP =

∫
A E[X | U ]dP, ∀A ∈ U .

We can interpreted E[X | U ] as a U-measurable random variable that is the best approx-

imation for X.

Definition 2.39. [14] Finite-dimensional product measures

Let (Ωk,Fk,Pk) , 1 ≤ k ≤ n, be probability spaces. We introduce that

F1 ×F2, . . . ,×Fn = σ{F1 × F2, . . . ,×Fn : Fk ∈ Fk, k = 1, 2, . . . , n}.
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Based on above model, we can construct a product space(×n
k=1Ωk,×n

k=1Fk), with an

associated probability measure P, given as

P(A1 ×A2 × · · · ×An) =
n∏

k=1

Pk(Ak),

for Ak ∈ Fk, 1 ≤ k ≤ n.

Theorem 2.40. [6] Fubini -Tonelli Theorem

Suppose A1 and A2 are σ-finite measure spaces. not necessarily complete, and if either∫
A1

(∫
A2

f(x, y)dy

)
dx < ∞,

or ∫
A2

(∫
A1

f(x, y)dy

)
dx < ∞,

then ∫
A1×A2

|f(x, y)|d(x, y) < ∞,

and ∫
A1

(∫
A2

f(x, y)dy

)
dx =

∫
A2

(∫
A1

f(x, y)dx

)
dy =

∫
A1×A2

f(x, y)d(x, y).

Theorem 2.41. [17] Test for Maxima and Minima

Assume f(x, y) be a function where

fx (x0, y0) = fy (x0, y0) = 0,

at a point (x0, y0), and suppose that all second partial derivatives are continuous there.

We denote by D the discriminant

D (x0, y0) = fxx (x0, y0) fyy (x0, y0)− (fxy (x0, y0))
2 ,

at the critical point (x0, y0), and conclude the following

• If D > 0 and fxx (x0, y0) > 0 at (x0, y0), then a relative minimum occurs at

(x0, y0). In this case, fyy (x0, y0) > 0 also.

• If D > 0 and fxx (x0, y0) < 0 at (x0, y0), then a relative maximum occurs at

(x0, y0). In this case, fyy (x0, y0) < 0 also.

• If D < 0 at (x0, y0), there is neither a maximum nor a minimum at (x0, y0).

• If D = 0 at (x0, y0), the test fails.
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Definition 2.42. [43] Vector field

A vector field is a function that assigns a vector to each point in its domain. In three-

dimensional domain a vector field might have a formula like

F⃗ (x, y, z) = M(x, y, z)⃗i+N(x, y, z)⃗j + P (x, y, z)k⃗.

Note that

• The vector field F⃗ is continuous if the component functions M,N , and P are

continuous.

• The vector field F⃗ is differentiable if each of the component functions is differen-

tiable.

In two-dimensional domain a vector field might have a formula like

F⃗ (x, y) = M(x, y)⃗i+N(x, y)⃗j.

Definition 2.43. [37] Brownian motion

A one-dimensional standard Brownian motion (or Wiener process) is a continuous

stochastic process {Wt}t≥0 on a probability space (Ω,F ,P) with the following proper-

ties

1. The standard Brownian motion process begins at t0 = 0 or P(W0 = 0) = 1.

2. For 0 = t0 ≤ t1 ≤ · · · ≤ tk , the increments displacements

W (t1),W (t2)−W (t1), . . . ,W (tk)−W (tk−1),

are independent random variables.

3. For 0 ≤ s < t , the increments Wt −Ws ∼ N(0, t− s) , that is

P((Wt −Ws) ∈ B) = 1√
2π(t− s)

∫
B
e
− (x)2

2(t−s)dx,

where B is a Borel subset of R.

Remark 2.2. 1. Property (1) in Definition 2.43 means to determine the position of

a Brownian particle in one dimension, we start at t = 0, with the initial position

specified as W0 = 0.
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2. Property (2) in Definition 2.43 means the in increment

W (t1),W (t2)−W (t1), . . . ,W (tk−1)−W (tk−2),

occurring during the time intervals [t0, t1] , . . . , [tk−2, tk−1], respectively, do not af-

fect the increment W (tk)−W (tk−1) that obtains during the time interval [tk−1, tk].

That is, the standard Brownian motion is assumed to be without memory. For in-

stance, the path of a pollen particle traverses in order to get to its current position

does not influence its future location.

3. Property (3) in Definition 2.43 indicates that

• Wt − Ws for 0 ≤ s < t , has a zero mean (if we think of Wt as the height

above a horizontal time-axis of pollen particles at time t, then a zero mean

indicates that, at time t + 1, the particle’s height is just as likely to increase

as it is to decrease, with no upward or downward drift).

• The variance t − s of an standard Brownian motion process increases with

the length of the time interval [s, t] (the pollen particle moves away from its

position at time s, and there is no tendency for the particle to return to that

position, that is, the process lacks any propensity for position reversion).

• The continuous path of Brownian motion t → W (t, ω), t ≥ 0 is nowhere

differentiable.

Definition 2.44. [8] n-dimensional Wiener process

An Rn the stochastic process W(·) =
(
W 1(·), . . . ,Wn(·)

)
is an n-dimensional Wiener

process provided

1. For each k = 1, . . . , n,W k(·) is a 1-dimensional Wiener process,

2. the σ-algebras Wk = U
(
W k(t) | t ≥ 0

)
are independent, k = 1, . . . , n.

Definition 2.45. [8] White noise

The white noise ξ is the time derivative of the Brownian motion. Mathematically,

ξ(t) = Ẇ (t) =
dW (t)

dt
.

Definition 2.46. [10] Poisson process

A stochastic process {X(t); t ≥ 0} taking values on S = N0 = {0, 1, 2, . . .}, with the

right continuous and piecewise constant trajectories is said to be a Poisson process with

parameter λ > 0 if

1. X(0) = 0.
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2. For 0 = t0 ≤ t1 ≤ · · · ≤ tn , the increments

X(t0), X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1),

are mutually independent random variables.

3. For all s, t, h > 0 and s > t the increments

X(s)−X(t),

and

X(s+ h)−X(t+ h),

have the identical probability distributions (which is called stationary increments).

4. For all t > 0, h ≥ 0

P (X(t+ h)−X(t) = k) =
(λh)k

k!
e−λh, k ∈ N0.

Definition 2.47. [10] Counting process

Given a stochastic process {N(t) : t ≥ 0} the formula

N(t) = sup {n ∈ N0 : τn ≤ t} ,

is called a counting process corresponding to a random sequence {τn : n ∈ N0}.

Definition 2.48. [10] Nonhomogeneous Poisson Process (NPP)

Let a stochastic process {N(t) : t ≥ 0} taking values S = N0 = {0, 1, 2, . . .}, value

of which represents the number of events in a time interval [0, t]. A counting process

{N(t) : t ≥ 0} is called a Nonhomogeneous Poisson Process (NPP) with an intensity

function λ(t) ≥ 0, t ≥ 0, if

1. P (N(0) = 0) = 1.

2. {N(t) : t ≥ 0} is process with independent increments, the right continuous and

piecewise constant trajectories.

3. P (N(t+ h)−N(t) = k) =

(∫ t+h
t λ(x)dx

)k

k! e−
∫ t+h
t λ(x)dx.

Remark 2.3. • Poisson process represents to count the number of times events in

a time interval [0, t]. For instance, number of arrivals customers to a store or

number of arrivals phone calls to a call center.
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• From the above definition it follows that the one dimensional distribution of NPP

is given by the rule

P (N(t) = k) =

(∫ t
0 λ(x)dx

)k
k!

e−
∫ t
0 λ(x)dx, k = 0, 1, 2, . . . .

• The expectation and the variance of NPP are the functions given by

Λ(t) = E[N(t)] =

∫ t

0
λ(x)dx,

V(t) = V [N(t)] =

∫ t

0
λ(x)dx, t ≥ 0.

Definition 2.49. [44] Continuous-time Markov chain

A continuous-time Markov chain on a finite set S is a family of random variables

{X(t)}t≥0 defined on a probability space (Ω,F ,P) such that

P (X (tn+1) = j | X (tn) = i,X (tn−1) = in−1, . . . , X (t0) = i0)

= P (X (tn+1) = j | X (tn) = i)

= Pi,j (tn+1 − tn) , for j, i, in−1, . . . , i0 ∈ S and tn+1 > tn > . . . > t0 ≥ 0.

In other words, the future of the process is conditionally independent of the past given

the present value.

2.2 Differential equations

In next three sections we will review some types of differential equations (ODE, PDE

and SDE) with some examples and more details.

Definition 2.50. [1] Differential equation

A differential equation is an equation, where the unknown is a function and both the

function and its derivatives may appear in the equation.

2.2.1 Ordinary differential equations

In this section we will introduce definition of ordinary differential equations and method

to solve ordinary differential equations with example.

Definition 2.51. [42] Ordinary differential equations

An ordinary differential equations (ODE) is an equation in which the unknown quantity
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is a function, and the equation involves derivatives of the unknown function with respect

to only one variable.

For the fixed point x0 ∈ Rn the ordinary differential equation may have the form{
ẋ(t) = b(x(t)), t > 0

x(0) = x0,

where x(t) is the state of the system at time t ≥ 0

ẋ(t) =
d

dt
x(t),

and

b : Rn → Rn,

is a given, smooth vector field and the solution is the trajectory

x(·) : [0,∞) → Rn.

Figure 2.1: Possible trajectory of ordinary differential equations.

Definition 2.52. [1] 1st order linear ODE

The general first order linear ordinary differential equation defined as

x
′
+ p(t)x = q(t),

where p(t), q(t) are continuous functions on an interval I ⊆ R.

Theorem 2.53. [1] Solution of 1st order linear ODE

The general solution x(t) satisfying the initial value x (t0) = x0 for any numbers t0 ∈ I

and x0 ∈ R. Precisely,

x(t) = e
−

∫ t
t0

p(s)ds
[
x0 +

∫ t

t0

e
∫ s
t0

p(s)ds
q(s)ds

]
, t ∈ I.
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Example 2.2. Find the general solution of

x
′
(t) + 4tx(t) = 8t.

and the solution such that x(0) = 1.

We can use the general formula from Theorem 2.53 to find

x(t) = e−4
∫ t
0 sds

[
1 +

∫ t

0
e4

∫ s
0 sds8.sds

]
= e−2t2

[
1 +

∫ t

0
8.se2s

2
ds

]
= e−2t2

[
1 + (2e2t

2 − 2)
]

= 2− e−2t2 .

2.2.2 Partial differential equations

In this section we will introduce definition of partial differential equations with examples.

Definition 2.54. [20] Partial differential equations

A partial differential equations (PDE) is an equation for a function which depends on

more than one independent variable which involves the function, the independent vari-

ables and partial derivatives of the function. The order of an PDE is the highest deriva-

tive that appears.

• The first order PDE in two independent variables of u(x, y) may have the form

F (x, y, u(x, y), ux(x, y), uy(x, y)) = 0.

• The second order PDE in two independent variables of u(x, y) may have the form

F (x, y, u(x, y), ux(x, y), uy(x, y), uxx(x, y), uxy(x, y), uyy(x, y)) = 0.

where ux and uy denote first-order partial derivatives with respect to x and y, respec-

tively, uxx and uyy denote a second-order derivatives with respect to x and y, respectively,

finally uxy represent to partial derivative of ux with respect to y.

Example 2.3. [20] Some examples of PDEs

1. The transport PDE

ux + uy = 0.
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2. The shock wave PDE

ux + uuy = 0.

3. The laplace’s PDE

uxx + uyy = 0.

2.2.3 Stochastic differential equations

In many applications the experimentally measured trajectories of systems modeled by

ODE do not in fact behave as predicted. Hence, it seems reasonable to modify ODE,

somehow to include the possibility of random effects disturbingthe system. A formal

way to do is by considering stochastic form of such DE’s.

Definition 2.55. [8] Stochastic differential equations

The Stochastic differential equations (SDE) definedẊ(t) = b(X(t)) +B(X(t))ξ(t), t > 0

X(0) = x0,

where B is (the space of n×m matrices)

B : Rn → Mn×m,

and

ξ(·) := m-dimensional (white noise).

Figure 2.2: Possible sample path of the Stochastic differential equa-
tions.

Theorem 2.56. [8] Itô’s Formula

Let X(·) solves the stochastic differential

dX = Fdt+GdW.
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Suppose u : R × [0, T ] → R is continuous, where ut, ux and uxx exists and continuous.

Let Y solves the stochastic differential equation

Y (t) = u(X(t), t).

Then the Itô’s formula or Itô’s chain rule given by

dY = utdt+ uxdX +
1

2
uxxG

2dt

=

(
ut + uxF +

1

2
uxxG

2

)
dt+ uxGdW.

That is, for all 0 ≤ s ≤ r ≤ T , we have

Y (r)− Y (s) = u(X(r), r)− u(X(s), s)

=

∫ r

s
ut(X, t) + ux(X, t)F +

1

2
uxx(X, t)G2dt+

∫ r

s
ux(X, t)GdW.

Example 2.4. Let X(·) = W (·) with

u(t) = eλx−
λ2t
2 .

Then dX = dW and F = 0, G = 1 .

Let

Y (t) = u(X(t), t) =⇒ Y (0) = 1.

Thus, Itô’s formula gives

dY =

(
ut + uxF +

1

2
uxxG

2

)
dt+ uxGdW

=

(
−λ2

2
eλx−

λ2t
2 + 0 +

λ2

2
eλx−

λ2t
2

)
dt+ λeλx−

λ2t
2 dW

=λeλx−
λ2t
2 dW

=λY dW.

Thus, the SDE is dY = λY dW,

Y (0) = 1,

has solution

Y (t) = eλx−
λ2t
2 .
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2.3 Gompertz distribution

In this section we introduce the Gompertz distribution which is used to describe the

distribution of human mortality.

Definition 2.57. [26] Gompertz distribution

The Gompertz distribution has a continuous probability density function with location

parameter a ≥ 0 and shape parameter b > 0

f(x) = aebx−
a
b (e

bx−1), (2.1)

and x ∈ (−∞,∞).

And the distribution function is

F (x) = 1− e−
a
b (e

bx−1). (2.2)

In actuarial or demographic applications, x usually denotes age which cannot be negative,

leading to bounded support on [0,∞).

Figure 2.3: Gompertz density function for different combination of a
and b parameters.
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Figure 2.4: Gompertz distribution function for different combination of
a and b parameters.

And the Gompertz force of mortality (or hazard function) λ(x) at age x ≥ 0 is

λ(x) = aebx, (2.3)

where a denotes the level of the force of mortality at age 0 and b the rate of aging.

Remark 2.4. [31] The Gompertz probability density function can be reformulated into

a distribution with location and scale parameters. By substituted Gompertz parameters

as

b =
1

n
where n > 0, (2.4)

and

a =
1

n
e−

m
n where m ∈ R, (2.5)

when substituted a and b from equations (2.4) and (2.5) in equation (2.1) then the

Gompertz density function can be expressed as

f(x) =
1

n
ee

−m
n −e

(x−m)
n +

(x−m)
n . (2.6)
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Similarly for the distribution function from equation (2.2) we get

F (x) = 1− ee
−m

n −e
(x−m)

n . (2.7)

And the hazard function (2.3) given as

λ(x) =
1

n
e

(x−m)
n . (2.8)

2.4 Copula functions

In this section we will introduce a Copula functions and some special types. Origin of

the word Copula is the latin word Copulare, which means (to join together).

Definition 2.58. [36] Uniform distribution

A uniform distribution of X on [a, b] is distribution with probability density function as

f(x) =
1

b− a
, a ≤ x ≤ b,

and its cumulative distribution function is

F (x) =

∫ x

a
f(t)dt =

x− a

b− a
, a ≤ x ≤ b.

Definition 2.59. [13] n-dimensional Copula

The n-dimensional Copula is a function C : [0, 1]n → [0, 1] is a distribution function

with uniform marginals. A Copula can be defined as a probability function

C (u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un) ,

where U1, . . . , Un are uniform distributions on the interval [0, 1].

Proposition 2.1. [13] Some properties for a Copula function

1. C (u1, . . . , un) is increasing in each component ui.

2. C (1, . . . , 1, um, 1, . . . , 1) = um for every m ∈ {1, . . . , n}, um ∈ [0, 1].

3. C (u1, . . . , un) = 0 if um = 0 for every m ≤ n.

Theorem 2.60. [13] Sklar’s Theorem

Assume F be a n-dimensional joint distribution function with marginals F1, . . . , Fn.
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Then there exists a Copula C : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = C (F1 (x1) , . . . , Fn (xn)) , ∀x1, . . . , xn.

Remark 2.5. [48] In 2 dimensional space, let X and Y be a pair of random variable with

cumulative distribution function as FX(x) and FY (y). Also let their joint cumulative

distribution function is FX,Y (x, y) (this function is known as a two-dimensional Copula).

Each pair (x,y) leads to a point in the unit square [0, 1]× [0, 1]. And this ordered pair in

turn corresponds to a number FX,Y (x, y) in interval [0, 1] as in figure (2.5).

Figure 2.5: two-dimensional Copula.

Definition 2.61. [48] Copula density function

The Copula density function c is derived as

c(s, t) =
∂2C(s, t)

∂s∂t
,

where s = F1(s) and t = F2(t) are marginal functions.

Definition 2.62. [39] Joint Copula density function

If the bivariate joint distribution function F (s, t) is defined by a Copula function

F (s, t) = C(F1(s), F2(t)),

where s, t > 0 and F1(s), F2(t) are marginal functions.

Then the joint density function of Copula is

f(s, t) = f1(s)f2(t)c(F1(s), F2(t)),

where c is Copula density function.
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Example 2.5. Independence Copula

Let the random variables X1 and X2 are independent.

The corresponding Copula is

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = P (U1 ≤ u1)P (U2 ≤ u2) = u1u2.

The second equality is due to independence of U1 and U2, and the last equality is because

U1 and U2 follow uniform distributions.

Example 2.6. Comonotonicity Copula

Let X2 = 2X1; that is, X1 and X2 have a deterministic and positive relationship.

We can derive the relation between the CDEs

F1(x) = P (X1 ≤ x) = P (2X1 ≤ 2x) = P (X2 ≤ 2x) = F2(2x),

which leads to the fact that U1 is equal to U2

U1 = F1 (X1) = F2 (2X1) = F2 (X2) = U2.

The Copula is

C (u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

= P (U1 ≤ u1, U1 ≤ u2)

= P (U1 ≤ min {u1, u2})

= min {u1, u2} .

The comonotonicity Copula has perfect positive dependence. Note that X2 = 2X1 can

be replaced by X2 = T (X1) for any strictly increasing transformation T .

Example 2.7. Counter monotonicity Copula

Similar to the previous example, let X2 = −2X1 and consider the perfect negative de-

pendence

F1(x) = P (X1 ≤ x) = P (−2X1 ≥ −2x) = P (X2 ≥ −2x) = 1− F2(−2x).

And

U1 = F1 (X1) = 1− F2 (−2X1) = 1− F2 (X2) = 1− U2.

The Copula is

C (u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

= P (U1 ≤ u1, 1− U1 ≤ u2)

= P (1− u2 ≤ U1 ≤ u1)

= max{u1 + u2 − 1, 0}.
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2.5 Archimedean Copula

There are many families of Copula function, in this section we will discuss the Archimedean

Copula family with examples.

Definition 2.63. [39] Archimedean Copula

The Copula in the form

C(u, v) = φ−1(φ(u) + φ(v)),

is called Archimedean Copula, with generating function φ(x) : [0, 1] → [0,∞), where φ

is a real valued function satisfying the following conditions

1. φ(1) = 0.

2. limx→0 φ(x) = ∞.

3. ∂φ
∂x < 0 for all x ∈ (0, 1).

4. ∂2φ
∂x2 > 0 for all x ∈ (0, 1).

Example 2.8. Let φ(t) = 1− t, t ∈ [0, 1]. Then the inverse is

φ−1(t) =

{
1− t , 0 ≤ t ≤ 1,

0 , 1 ≤ t < ∞.

Therefore, the Archimedean Copula is

C(u, v) = φ−1(φ(u) + φ(v))

= φ−1(2− u− v)

=

{
u+ v − 1 , 0 ≤ 2− u− v ≤ 1

0 , 1 ≤ 2− u− v,

= max(u+ v − 1, 0).

In this Thesis, we will focus on the following three types of Archimedean Copulas.

Definition 2.64. [12] Frank Archimedean Copula

Frank Archimedean Copula is

C(s, t) =
1

α
ln

(
1 +

(eαs − 1)
(
eαt − 1

)
eα − 1

)
, α ̸= 0,

where the generator function is φ(t) = ln
(
eαt−1
eα−1

)
.
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And, from the Frank Archimedean Copula Definition 2.64 we have

∂C(s, t)

∂t
=

(eαs − 1)eαt

(eα − 1) + (eαs − 1) (eαt − 1)
. (2.9)

Proposition 2.2. [12] Density function of Frank Copula

Based on Definition 2.61 the density function of Frank Copula can be derived as

c(s, t) =
∂2C(s, t)

∂s∂t

=
∂

∂s

(
(eαs − 1)eαt

(eα − 1) + (eαs − 1) (eαt − 1)

)
=

α(eα − 1)eα(t+s)

((eα − 1) + (eαs − 1) (eαt − 1))2
.

Definition 2.65. [5] Clayton Archimedean Copula

Clayton Archimedean Copula is

C(s, t) =
(
s−α + t−α − 1

)−1
α , α > 0,

where the generator function is φ(t) = t−α−1
α .

And, from the Clayton Archimedean Copula Definition 2.65 we have

∂C(s, t)

∂t
= t−(1+α)

(
s−α + t−α − 1

)− 1+α
α . (2.10)

Proposition 2.3. [5] Density function of Clayton Copula

The Copula density function of Clayton Copula can be derived as

c(s, t) = (1 + α)(st)−1−α
(
s−α + t−α − 1

)−1
α

−2
.

Definition 2.66. [19] Stable Archimedean Copula

Stable (or Gumbel-Hougaard) Archimedean Copula is

C(s, t) = e−((− ln s)α+(− ln t)α)
1
α , α ≥ 1

, where the generator function is φ(t) = (− ln t)α.

And, from the Gumbel-Hougaard Archimedean Copula Definition 2.66 we have

∂C(s, t)

∂t
=

(− ln t)α−1

t
e−((− ln s)α+(− ln t)α)

1
α ((− ln s)α + (− ln t)α)

1−α
α . (2.11)
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Proposition 2.4. [19] Density function of Stable Copula

The Copula density function of Stable Copula can be derived as

c(s, t) = e−((− ln s)α+(− ln t)α)
1
α ((− ln s)α + (− ln t)α)−2+ 2

α

×
(
1 + (α− 1) ((− ln s)α + (− ln t)α)

1
α

)
(st)−1 (ln s. ln t)α−1 .

2.6 Archimedean Copula on Gompertz distribution

In this section, we will give an example, by applying a Copulas functions on Gompertz

distribution defined in equations (2.6) and (2.7). Three types of Archimedean Copulas

are introduced.

To proceed we find the following integrals∫ ∞

t
f(s, t)ds, (2.12)

and ∫ ∞

t
f(t, z)dz, (2.13)

as in the following lemmas.

In the next lemma we give the formula of the integral (2.12) that we are looking for,

using three different types of Archimedean Copulas.

Lemma 2.67. Assume the bivariate joint distribution function F (s, t) is defined by a

Copula function

F (s, t) = C(F1(s), F2(t)), (2.14)

where s, t > 0 and each marginal distribution is represent to a Gompertz distribution.

Then the values of the integral (2.12) are given by

(i) Frank Copula
f2(t)(e

α − eαF1(t))

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

) .
(ii) Clayton Copula

f2(t)− f2(t)

(
1 +

(
F2(t)

F1(t)

)α

− (F2(t))
α

)− 1+α
α

.
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(iii) Stable Copula

f2(t)−
f2(t)F (t, t)

F2(t)

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

.

Proof. From equations (2.6) and (2.7), for i = 1, 2, we have

Fi(t) = 1− ee
−mi

ni −e
(t−mi)

ni ,

and

fi(t) =
1

ni
e
e
−mi

ni −e
(t−mi)

ni +
(t−mi)

ni , (2.15)

with mi and ni, are parameters. The hazard function from equation (2.8) is given as

λi(t) =
1

ni
e

(t−mi)

ni .

Since F (s, t) is bivariate joint distribution function, it follows that from Definition 2.62,

the corresponding joint density function f(s, t) given by

f(s, t) = f1(s)f2(t)c(F1(s), F2(t)),

where c is the Copula density function. Substituting the value of f(s, t) from (2.67) in

the integral (2.12), we get ∫ ∞

t
f1(s)f2(t)c(F1(s), F2(t))ds, (2.16)

where that, f1(s) is the density function of F1(s) given in equation (2.15). Hence,

dF1(s)

ds
= f1(s),

and

dF1(s) = f1(s)ds. (2.17)

Substitute equation (2.17) in the integral (2.16) to obtain∫ ∞

t
f2(t)c(F1(s), F2(t))dF1(s).

Substitute the value of Copula density function from Definition 2.61 in above integral

to obtain

f2(t)

∫ ∞

t

∂2C((F1(s), F2(t)))

∂(F1(s))∂(F2(t))
dF1(s). (2.18)
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Integrate (2.18) to get

f2(t)

(
∂C((F1(s), F2(t)))

∂(F2(t))

∣∣∣∣∣
s=∞

s=t

)
. (2.19)

Now to find (2.19) we will apply three types of Archimedean copulas.

(i) Frank Copula

Substitute the value of ∂C((F1(s),F2(t)))
∂(F2(t))

from equation (2.9) in (2.19), we get

f2(t)

(
(eαF1(s) − 1)eαF2(t)

(eα − 1) +
(
eαF1(s) − 1

) (
eαF2(t) − 1

)∣∣∣∣∣
s=∞

s=t

)
.

Simplify,

f2(t) lim
b→∞

(
(eαF1(b) − 1)eαF2(t)

(eα − 1) +
(
eαF1(b) − 1

) (
eαF2(t) − 1

)
− (eαF1(t) − 1)eαF2(t)

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

)) .

The Gompertz distribution function F1 goes to 1 as b → ∞, so the above terms

becomes

f2(t)

(
(eα − 1)eαF2(t)

(eα − 1) + (eα − 1)
(
eαF2(t) − 1

) − (eαF1(t) − 1)eαF2(t)

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

)) .

Rearrange the above terms we get

f2(t)

(
(eα − 1)eαF2(t)

(eα − 1)
(
1 + eαF2(t) − 1

) − (eαF1(t) − 1)eαF2(t)

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

)) .

That is,

f2(t)

(
1− (eαF1(t) − 1)eαF2(t)

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

)) . (2.20)

Rearrange (2.20) we get

f2(t)

(
eα − 1 + eαF1(t)eαF2(t) − eαF1(t) − eαF2(t) + 1− eαF1(t)eαF2(t) + eαF2(t)

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

) )
.

Hence, by the Frank Copula, the integral (2.12) is equal to

f2(t)(e
α − eαF1(t))

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

) .
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(ii) Clayton Copula

From equation (2.10), the first derivative of Clayton Copula can be written as

∂C(s, t)

∂t
=

(
1 +

(
t

s

)α

− tα
)− 1+α

α

. (2.21)

Substitute F1(s) and F2(t) in equation (2.21) to get

∂C(F1(s), F2(t))

∂(F2(t))
=

(
1 +

(
F2(t)

F1(s)

)α

− (F2(t))
α

)− 1+α
α

. (2.22)

Substitute equation (2.22) in equation (2.19) we get

f2(t)

((
1 +

(
F2(t)

F1(s)

)α

− (F2(t))
α

)− 1+α
α

∣∣∣∣∣
s=∞

s=t

)
.

Thus,

f2(t) lim
b→∞

((
1 +

(
F2(t)

F1(b)

)α

− (F2(t))
α

)− 1+α
α

−
(
1 +

(
F2(t)

F1(t)

)α

− (F2(t))
α

)− 1+α
α

)
.

The Gompertz distribution function F1 goes to 1 as b → ∞, so the above terms

becomes

f2(t)

(
(1 + (F2(t))

α − (F2(t))
α)−

1+α
α −

(
1 +

(
F2(t)

F1(t)

)α

− (F2(t))
α

)− 1+α
α

)
.

Hence, by the Clayton Copula, the integral (2.12) is equal to

f2(t)− f2(t)

(
1 +

(
F2(t)

F1(t)

)α

− (F2(t))
α

)− 1+α
α

.

(iii) Stable Copula

From equation (2.11), the first derivative of Stable Copula can be written as

∂C(s, t)

∂t
=

1

t
e−((− ln s)α+(− ln t)α)

1
α

((
ln s

ln t

)α

+ 1

) 1−α
α

. (2.23)

Substitute F1(s) and F2(t) in equation (2.23) to get

∂C(F1(s), F2(t))

∂(F2(t))
=

1

F2(t)
e−((− lnF1(s))α+(− lnF2(t))α)

1
α

((
lnF1(s)

lnF2(t)

)α

+ 1

) 1−α
α

.

(2.24)
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Substitute equation (2.24) in equation (2.19), we get

f2(t)

(
1

F2(t)
e−((− lnF1(s))α+(− lnF2(t))α)

1
α

((
lnF1(s)

lnF2(t)

)α

+ 1

) 1−α
α

∣∣∣∣∣
s=∞

s=t

)
.

Thus,

f2(t) lim
b→∞

(
1

F2(t)
e−((− lnF1(b))α+(− lnF2(t))α)

1
α

((
lnF1(b)

lnF2(t)

)α

+ 1

) 1−α
α

)

−f2(t)

(
1

F2(t)
e−((− lnF1(t))α+(− lnF2(t))α)

1
α

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

)
.

The Gompertz distribution function F1 goes to 1 as b → ∞, so the above terms

becomes

f2(t)− f2(t)

(
1

F2(t)
e−((− lnF1(t))α+(− lnF2(t))α)

1
α

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

)
. (2.25)

From Definition of Stable Copula 2.66, we know that

C(F1(t), F2(t)) = e−((− lnF1(t))α+(− lnF2(t))α)
1
α . (2.26)

Substitute equation (2.26) in (2.25) to get

f2(t)−
f2(t)C(F1(t), F2(t))

F2(t)

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

. (2.27)

Substitute equation (2.14) in (2.27)

f2(t)−
f2(t)F (t, t)

F2(t)

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

,

which is a result of the integral in (2.12) by the Stable Copula.

This completes the proof.

Next lemma gives us the formula of the integral (2.13) we are looking for using three

different types of Archimedean Copulas

Lemma 2.68. Assume the bivariate joint distribution function F (s, t) is defined by a

Copula function

F (s, t) = C(F1(s), F2(t)),
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where s, t > 0 and each marginal distribution is represent to a Gompertz distribution.

Then the values of the integral (2.13) are given by

(i) Frank Copula

∫ ∞

t
f(t, z)dz =

f2(t)(e
α − eαF1(t))

(eα − 1) +
(
eαF1(t) − 1

) (
eαF2(t) − 1

) .
(ii) Clayton Copula

∫ ∞

t
f(t, z)dz = f2(t)− f2(t)

(
1 +

(
F2(t)

F1(t)

)α

− (F2(t))
α

)− 1+α
α

.

(iii) Stable Copula

∫ ∞

t
f(t, z)dz = f2(t)−

f2(t)F (t, t)

F2(t)

((
lnF1(t)

lnF2(t)

)α

+ 1

) 1−α
α

.

Proof. Similar to the proof of Lemma 2.67.
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Chapter 3

Optimal welfare strategies for a

two-wage earners within a markets of

life-insurance and welfare providers

In this chapter, we extend the work done by Wei et al introduced in [45] by adding

the welfare policy to be an additional control variable on the problem for the two wage-

earners. We suppose that the two wage-earners are entered the welfare markets to protect

there families through a social welfare provider which is available to both agents.

3.1 Model setup

In this section, our industrial markets consists of the financial market which is available

for the two wage-earners, the life insurance market and social welfare market. We

describe their details separately. After that, we introduce the corresponding wealth

process.

3.1.1 Financial market model

We will introduce the financial market and make it available for investment all times

and consists as follows
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• T < ∞ denotes the common retirement time of the two wage-earners.

• τi represent to death time of wage-earner i where i = 1, 2, and (τ1, τ2), that are

independent of each other.

• W (·) represent to standard Brownian motion.

• T1 = τ1 ∧ τ2 represent the time of death of the first wage-earner from the two

wage-earners.

• A probability space

(Ω,F ,F,P),

where the natural filtration

F = {Ft}t∈[0,T ] ,

is generated by W (·).

• The first wage-earner earns a deterministic labor incomes of I1(·).

• The second wage-earner earns a deterministic labor incomes of I2(·).

• The risk-free return rate r(·) is such that r(t) > 0.

• The appreciation rate of the risky asset µ(·) is defined by

µ : [0, T ] → R.

• The volatility of the risky asset σ(·) is defined by

σ : [0, T ] → R.

• The financial market has two types of assets, riskless B(·) and risky S(·) with

prices satisfying the following differential equations, respectively,

dB(t)

B(t)
= r(t)dt,

dS(t)

S(t)
= µ(t)dt+ σ(t)dW (t),

(3.1)

where t from 0 up until the retirement time T .

Assumption 1. 1. The coefficients r(t), µ(t) and σ(t) are assumed to be determin-

istic continuous functions on interval [0, T ].
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2. There exists an {Ft}0≤t≤T progressively measurable process ϕ(t) ∈ R, called the

market price of risk, such that for Lebesgue-almost-every t ∈ [0, T ], the risk pre-

mium

β(t) = (µ (t)− r (t)) ∈ R,

is connected to the market price of risk ϕ(t) by the identity

β(t) = σ(t)ϕ(t), a.s.

3. σ(t) must satisfies the following condition∫ T

0
σ2 (t) dt < ∞.

4. We assume that ∫ T

0
ϕ2(t)dt < ∞ a.s.

5. The following exponential martingale condition holds

Et[e
−

∫ T
0 ϕ(t)dW (t)− 1

2

∫ T
0 ∥ϕ(t)∥2dt] = 1.

6. Assume that the lifetime of the two wage-earners are being random and represented

by a continuous random variable (τ1 > 0, τ2 > 0) defined on the probability space

(Ω,F ,F,P).

3.1.2 Life-insurance market model

In this section, we will define the distribution of the random variables (τ1, τ2), and the

corresponding conditional probability distribution functions to help us introducing the

life-insurance market model. To do so, we assume that the two wage-earners have a

participated in the life-insurance market by paying an amount of premium ki(t) to the

life-insurance provider, where t ∈ [0, τi ∧ T ].

Assumption 2. The random variable τi for the wage-earner i has a distribution function

Fi : [0,∞) → [0, 1] is given by

Fi(t) = P (τi ≤ t) =

∫ t

0
fi(s) ds,
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where fi is the density function defined by

fi : [0,∞) → R+.

Now we define a new function, which is called the survival function

F+
i : [0,∞) → [0, 1],

for the wage-earner i to survive past time t is defined as

F+
i (t) = P (τi > t) = 1− Fi(t), i = 1, 2.

Assume that the mortality rate (or hazard function) λi(t) for the wage-earner i defined

as

λi(t) = lim
∆t→0

P (t < τi ≤ t+∆t|τi > t)

∆t
, i = 1, 2, (3.2)

which represents the conditional instantaneous death rate for the wage-earner surviving

past time t.

From equation (3.2) and Assumption 2 we have

λi(t) = lim
∆t→0

P (t < τi ≤ t+∆t|τi > t)

∆t

= lim
∆t→0

P (τi ≤ t+∆t)− P (τi ≤ t)

∆tP (τi > t)

= lim
∆t→0

Fi(t+∆t)− Fi(t)

∆tP (τi > t)

=
1

P (τi > t)
lim
∆t→0

Fi(t+∆t)− Fi(t)

∆t

=
fi(t)

F+
i (t)

= − d

dt
(lnF+

i (t)).

Hence, we can write F+
i (t) in the form

P (τi > t) = F+
i (t) = e−

∫ t
0 λi(z)dz.

Thus, the probability distribution functions Fi(t) is

P (τi ≤ t) = Fi(t) = 1− e−
∫ t
0 λi(z)dz. (3.3)
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And fi(t) is related to λi(t) by the identity

fi(t) = λi(t)F
+
i (t) = λi(t)e

−
∫ t
0 λi(z)dz. (3.4)

Similarly, we can define conditional probability distribution functions as follows

• The conditional probability function F1(s; t) of wage-earner 1 die before time s,

given that he is alive at time t and t ≤ s is

F1(s; t) = P (τ1 ≤ s|τ1 > t). (3.5)

The corresponding conditional density function of F1(s; t) is f1(s; t).

• The conditional probability function F2(s; t) of wage-earner 2 die before time s,

given that he is alive at time t and t ≤ s is

F2(s; t) = P (τ2 ≤ s|τ2 > t). (3.6)

The corresponding conditional density function of F2(s; t) is f2(s; t).

• The conditional probability function FT1(s; t) represent to first death between the

two wage-earners occur before time s, given that they are alive at time t and t ≤ s

is

FT1(s; t) = P (T1 ≤ s|T1 > t). (3.7)

The corresponding conditional density function of FT1(s; t) is fT1(s; t).

• The conditional probability function F (s1, s2; t) represent to the wage-earner i

dies before time si where i = 1 and 2, given that they are alive at time t and

t ≤ min{s1, s2} is

F (s1, s2; t) = P (τ1 ≤ s1, τ2 ≤ s2|T1 > t), (3.8)

The corresponding conditional density function of F (s1, s2; t) is f(s1, s2; t).

For i = 1, 2, any contract between the wage-earner i and the insurance company starts

at time t = 0 and stops at time equals to the minimum between the death time of the

wage-earner τi or it’s retirement time T; i.e., (τi ∧ T ). If the wage-earner i dies at time τi

while having a contract with the insurance company by buying life-insurance premium

rates ki(τi), then that insurance company pays an amount

ki (τi)

ηi (τi)
,
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where

ηi : [0, T ] → R+

denotes the premium-insurance ratio which is determined by the insurance company.

In case τi < τ3−i(i = 1, 2), which means the wage-earner i dies first, the total wealth at

death time τi jumps to

X (τi) = X (τi−) +
ki (τi)

ηi (τi)
,

where X (τi−) denotes the wealth for the wage-earner i prior the time of death.

If the two wage-earners dies simultaneously, then the insurance company pays to there

beneficiary an amount
2∑

i=1

ki (τi)

ηi (τi)
.

3.1.3 Social security system model

In this section, we will allow the two wage-earners to contribute in the social security

system in order to protect their families in the future. We assume that the wage-earner

i, i = 1, 2 contributes in the welfare system by paying an amount qi(t) to the welfare

provider, where the time t is such that t ∈ [0, τi ∧ T ].

If the wage-earner i dies at time τi ≤ T , while he is participating in the social security

system, then the social security company has to pay to his beneficiary the amount

qi(t)

hi(t)
,

where

hi(t) : [0, T ] → R+,

is a continuous and deterministic positive function which is determined by the social

security company, and

qi(t) : [0, T ] → R+,

is a non-negative deterministic function.

The participation in the social system ends when the wage-earner dies or achieves re-

tirement age, whichever occurs first. Therefore, for the wage-earner i, the total wealth

at death time τi ≤ T equals to

X̄(τi) = X(τi−) +
ki(τi)

ηi(τi)
+

qi(τi)

hi(τi)
.
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3.2 Optimal control problem

In this section, we will consider the optimal control problem for the two wage-earners

whose goal is find the optimal strategies that will maximize the expected utility, while the

two wage-earners are purchasing life-insurance and having access to the social security

system.

To proceed in modeling the flow of the wage-earner’s wealth, we first introduce the

following assumption.

Assumption 3. Let t ∈ [0,min{τ, T}]. We assume the following

• The income function Ii : [0, T ] → R+
0 , i = 1, 2, is a deterministic Borel-measurable

function satisfying the integrability condition∫ T

0
Ii(t) dt < ∞.

• The consumption process (ci(t))0≤t≤T , i = 1, 2, is a {Ft}0≤t≤T progressively mea-

surable non-negative process satisfying the following integrability condition for the

investment horizon T > 0 ∫ T

0
ci(t) dt < ∞ a.s..

• The premium insurance rate (ki(t))0≤t≤T and welfare premium payout (qi(t))0≤t≤T

are non-negative {Ft}0≤t≤T predictable process, for i = 1, 2.

Let ui(·) be the amount invested in the risky asset where i = 1, 2. For the wage-earner

i, the wealth process is defined as

Xi(t) = xi,0 +

∫ t

0

(
− ci(s)− ki(s)− qi(s) + Ii(s)

)
ds+

∫ t

0

(Xi(s)− ui(s))

B(s)
dB(s)

+

∫ t

0

ui(s)

S(s)
dS(s),

where xi,0 is the initial wealth of wage-earner i. The last equation can be written using

the dynamics in equation (3.1) as

Xi(t) = xi,0 +

∫ t

0

(
− ci(s)− ki(s)− qi(s) + Ii(s)

)
ds+

∫ t

0

(
Xi(s)− ui(s)

)
r(s)ds

+

∫ t

0
ui(s)

(
µ(s)dt+ σ(s)dW (s)

)
.
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After rearranging the above terms we can get the following form

Xi(t) = xi,0 +

∫ t

0

(
r(s)Xi(s) + (µ(s)− r(s))ui(s)− ci(s)− ki(s)− qi(s) + Ii(s)

)
ds

+

∫ t

0
ui(s)σ(s)dW (s). (3.9)

Differentiate equation (3.9) with respect to t to get this differential form

dXi(t) = [r(t)Xi(t) + (µ(t)− r(t))ui(t)− ci(t)− ki(t)− qi(t) + Ii(t)] dt

+ σ(t)ui(t)dW (t), t ∈ [0, τi ∧ T ] .
(3.10)

The total household wealth defined as

X(·) = X1(·) +X2(·). (3.11)

Thus, differentiate both sides

dX(·) = dX1(·) + dX2(·). (3.12)

Define the total investment in risky asset as

u(t) =

2∑
i=1

ui(t)1{t<τi}, (3.13)

where 1{·} is the indicator function.

Substituting the identities of (3.10), (3.11) and (3.13) in the equation (3.12) we obtain

dX(t) =

[
r(t)X(t) + [µ(t)− r(t)]u(t)− 1{t<τ1} [c1(t) + k1(t) + q1(t)− I1(t)]

−1{t<τ2} [c2(t) + k2(t) + q2(t)− I2(t)]

]
dt+ σ(t)u(t)dW (t), t ∈ [0, (τ1 ∨ τ2) ∧ T ] .

3.3 Stochastic optimal control problem

In this section, we will state the expected utility and the value function of the two wage-

earners using the dynamic of the wealth process. To proceed, assume A be the set of

admissible strategies which has the form

π(·) = (c1(·), c2(·), k1(·), k2(·), q1(·), q2(·), u(·)) ,
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where ci is the consumption of agent i, ki is the life-insurance premium rate of agent i,

qi is the welfare system premium rate of agent i, i = 1, 2, and u is the total investment

in the risky asset.

The set of all admissible strategies A can be expressed as

A =

{
π(·) ∈

(
R+
)7 | π(·) is F− measurable ,

Et

[∫ T

0
u2(t)dt

]
< ∞,

Et

[∫ T

0
|ci(t)| dt

]
< ∞,

Et

[∫ T

0
|ki(t)|dt

]
< ∞,

Et

[∫ T

0
|qi(t)| dt

]
< ∞, i = 1, 2,

where Et [·] denote the expectation conditioned on Ft.

For any π ∈ A we define

J(t, x;π(·)) = Et

[ ∫ τ1∧T

t
w1e

−δsU (c1(s)) ds

+

∫ τ2∧T

t
w2e

−δsU (c2(s)) ds+ w31{τ1∨τ2≤T}e
−δ(τ1∨τ2)

×

(
U

(
X (τ1 ∨ τ2) +

2∑
i=1

ki (τi)

ηi (τi)
1{τi=τ1∨τ2}

)
+ U

(
2∑

i=1

qi (τi)

hi (τi)
1{τi=τ1∨τ2}

))

+ w41{τ1∨τ2>T}e
−δTU(X(T ))

]
,

(3.14)

where U(·) represent the utility function and the constants

wi ≥ 0, for all i = 1, 2, 3, 4,

have sum to one unit. That is,
4∑

i=1

wi = 1.

The constants wi are reflecting the relative importance of one utility type with respect

to another utility and δ is discount factor.

Finally, the value function will be defined as

V (t, x) = max
π∈A

J(t, x;π(·)).
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Chapter 4

Optimization problem after the first

death

Based on Chapter 3, in this chapter we will find an explicit solution for the problem

under consideration when a post death of one person from the two wage-earners has

accrued. To proceed, we will first transform the stochastic optimal control problem of

the two wage-earners to an equivalent one with fixed planning horizon, after that we

can derive a dynamic programming principle (DPP) and the corresponding the HJB

equation.

4.1 Stochastic optimal control problem after the first death

In this section, we will state the stochastic optimal control problem post first death, and

make certain assumptions that help us to state our DPP .

To solve the optimization problem after the death of one wage-earner from the two

wage-earners, we consider the following case

T1 = τ3−i < τi, i = 1, 2.
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If T1 = τ3−i, after death of one person, the optimization problem of the wage-earner i

can be considered as

max J̃i (t, x; ci(·), ki(·), qi(·), ui(·)) = Et

[∫ τi∧T

t
wie

−δsU (ci(s)) ds

+ w31{τi≤T}e
−δτi

(
U

(
X (τi) +

ki (τi)

ηi (τi)

)
+ U

(
qi (τi)

hi (τi)

))

+ w41{τi>T}e
−δTU(X(T ))

]
,

(4.1)

where Xi(·) is as given in equation (3.9).

For i = 1, 2, the value functions Vi(t, x) are expressed as

Vi(t, x) = sup
(ci,ki,qi,ui)

J̃i (t, x; ci(·), ki(·), qi(·), ui(·)) .

For simplicity, we will define the following notations for compensations

Υ(τi) = X (τi) +
ki (τi)

ηi (τi)
,

Ῡ(τi) =
qi (τi)

hi (τi)
.

Now, for i = 1, 2, let

Li(t, ci(t)) = U (ci(t)) ,

be the utility function describing the wage-earner’s i preferences regarding consumption

at some instant of time t ∈ [0, T ],

R(X(T )) = U(X(T )),

be the utility function for the terminal wealth at retirement time T,

Y Υ(τi,Υ(τi)) = U (Υ(τi)) ,

Y Ῡ(τi, Ῡ(τi)) = U
(
Ῡ(τi)

)
,

are the wage-earner’s utility functions for the size of Υ(t) and Ῡ(t),respectively, at time

t ∈ [0, T ]. For simplicity, we will assume Y Υ(t, ·) = Y Ῡ(t, ·) = Y (t, ·).

The following assumption allows us to apply the DPP and derive an explicit solution

later on in this Thesis.
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Assumption 4. The utility functions

Li : [0;T ]× R+ → R+,

Y Υ : [0;T ]× R+ → R+,

and

Y Ῡ : [0;T ]× R+ → R+,

are twice differentiable, strictly increasing and strictly concave functions on their second

variable, and

R : R+ → R+

is a twice differentiable, strictly increasing and strictly concave function.

Let Ai(t, x) be defined as the set of all admissible strategies for control problem after

first death

πi(·) := (ci(·), ki(·), qi(·), ui(·))

for the evolution of the wealth process with boundary condition X(t) = x.

For any given πi ∈ Ai(t, x) equation (4.1) can be written as

max J̃i (t, x;πi(·)) := Et

[∫ τi∧T

t
wie

−δsLi(s, ci(s))ds

+ w31{τi≤T}e
−δτi

(
Y (τi,Υ(τi)) + Y (τi, Ῡ(τi))

)

+ w41{τi>T}e
−δTR(Xπi

t,x(T ))

]
,

(4.2)

where Xπi
t,x(s) is the solution of the stochastic differential equation (3.10). We note that

Xπi
t,x(s) ≥ 0 is the wealth process which starts from x at time t ≤ s when πi ∈ Ai(t, x)

is being selected.

The transformation of the control problem (4.2) into a one with a fixed planning horizon

is explained in the following lemma.
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Lemma 4.1. Assume that all previous Assumptions (1)-(4) are hold. If the random

variables τ1 and τ2 are independent of the filtration F, then

J̃i(t, x;πi(·)) = Et

[∫ T

t

(
wie

−δs(1− Fi(s, t))Li(s, ci(s))

+ w3e
−δτifi(s, t) ×

(
Y (s,Υ(s)) + Y (s, Ῡ(s))

))
ds

+ w4e
−δT (1− Fi(T, t))R(X(T )) | Ft

]
.

Proof. From equation (4.2), we can rewrite the functional J̃i as

J̃i(t, x;π(·)) = Et

[
1{τi≥T}

∫ T

t
wie

−δsLi(s, ci(s))ds+ 1{τi<T}

∫ τi

t
wie

−δsLi(s, ci(s))ds

+ w31{τi≤T}e
−δτi ×

(
Y (τi,Υ(τi)) + Y (τi, Ῡ(τi))

)
+ w41{τi>T}e

−δTR(X(T )) | τi > t,Ft

]
.

Based on equations (3.5) and (3.6), the conditional probability density of the random

variable τi is given by fi(u, t) and since τi is independent of the filtration F for i = 1, 2,

then we have

J̃i(t, x;πi(·)) = Et

[
(1− Fi(T, t))

∫ T

t
wie

−δsLi(s, ci(s))ds

+

∫ T

t
fi(u, t)

∫ u

t
wie

−δsLi(s, ci(s))dsdu

+

∫ T

t
fi(u, t)w3e

−δu ×
(
Y (u,Υ(u)) + Y (u, Ῡ(u))

)
du

+ w4(1− Fi(T, t))e
−δTR(X(T )) | Ft

]
.

(4.3)

By the Fubini-Tonelli Theorem 2.40, since

fi(u, t)e
−δsLi(s, ci(s)) ≥ 0,
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it follows that, the order of integration can be interchanged, so∫ T

t
fi(u, t)

∫ u

t
e−δsLi(s, ci(s))dsdu =

∫ T

t

∫ u

t
fi(u, t)e

−δsLi(s, ci(s))dsdu

=

∫ T

t

∫ T

s
fi(u, t)e

−δsLi(s, ci(s))duds

=

∫ T

t

(∫ T

s
fi(u, t)du

)
e−δsLi(s, ci(s))ds

=

∫ T

t
(Fi(T, t)− Fi(s, t)) e

−δsLi(s, ci(s))ds.

(4.4)

Hence, by equation (4.3) and equation (4.4) we get

J̃i(t, x;πi(·)) = Et

[∫ T

t

(
wie

−δs(1− Fi(s, t))Li(s, ci(s))

+ w3e
−δτifi(s, t) ×

(
Y (s,Υ(s)) + Y (s, Ῡ(s))

))
ds

+ w4e
−δT (1− Fi(T, t))R(X(T )) | Ft

]
,

which concludes the proof.

Now, we introduce the following definition which will help us stating the next lemma.

Definition 4.2. [44] Let X(·) is a continuous stochastic process defined on the filtered

probability space (Ω,F ,P, {Ft}), then X has a Markcov property if for 0 < t < s < T

we have

Et [Xs | Ft] = Et [Xs | Xt] .

In other words, a stochastic process has the Markov property if the conditional proba-

bility distribution of future states of the process (conditional on both past and present

values) depends only upon the present state, not on the sequence of events that preceded

it.

Lemma 4.3. (DPP) For 0 ≤ t < s < T , then the maximum expected utility Vi(t, x)

satisfies the recursive relation

Vi(t, x) = sup
πi∈Ai(t,x)

Et

[
e−

∫ s
t λi(v)dvVi

(
s,Xπi

t,x(s)
)
+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.

(4.5)
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Proof. For any πi ∈ Ai(t, x) with the corresponding wealthXπi
t,x(·) and the corresponding

total legacy Υπi
t,x(u) and Ῡπi

t,x. Lemma 4.1 gives that

J̃i(t, x;πi(·)) = Et

[∫ T

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

+ w4e
−δT (1− Fi(T, t))R(X(T ))

∣∣∣∣ Ft

]
.

For any 0 ≤ t < s < T the above equation becomes

J̃i(t, x;πi(·)) = Et

[∫ T

s

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

+ w4e
−δT (1− Fi(T, t))R(X(T ))

∣∣∣∣ Ft

]
.

(4.6)

Note that from equation (3.4) and we can get that for i = 1, 2,

fi(u, t) = λi(u)e
−

∫ u
t λi(v)dv

= e−
∫ s
t λi(v)dvλi(u)e

−
∫ u
s λi(v)dv

= e−
∫ s
t λi(v)dvfi(u, s).

Similarly,

1− Fi(u, t) = e−
∫ s
t λi(v)dv(1− Fi(u, s)).

After substituting the values of fi(u, t) and 1− Fi(u, t) in equation (4.6), we get
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J̃i(t, x;πi(·)) = Et

[
e−

∫ s
t λi(v)dv

(∫ T

s

(
wie

−δu(1− Fi(u, s))Li(u, ci(u))

+ w3e
−δτifi(u, s)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

+w4e
−δT (1− Fi(T, s))R(Xπi

t,x(T ))
)

+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.

(4.7)

Note that the stochastic process Xπi
t,x(·) has the Markov’s Property from Definition 4.2,

in which case
Et

[
R(Xπi

t,x(T )) | Ft

]
= Et

[
R(Xπi

t,x(T )) |Fs| Ft

]
= Et

[
R(Xπi

s,Xt,x(s)
(T ) | Ft

]
,

and πi(·) = (ci(·), ki(·), qi(·), ui(·)) defined on interval [s, T ] is in Ai(s,X
πi
t,x(s)).

Hence, identity (4.7) becomes

J̃i(t, x;πi(·)) = Et

[
e−

∫ s
t λi(v)dvJ̃i

(
s,Xπi

t,x(s);πi(·)
)

+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]

≤ Et

[
e−

∫ s
t λi(v)dvVi

(
s,Xπi

t,x(s)
)
+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.

Note that since πi(·) = (ci(·), ki(·), qi(·), ui(·)) is arbitrary, then it follows that

Vi(t, x) ≤ sup
πi∈Ai(t,x)

Et

[
e−

∫ s
t λi(v)dvVi

(
s,Xπi

t,x(s)
)
+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.

(4.8)

Thus, we conclude the first direction.
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Conversely, given that πi(·) = (ci(·), ki(·), qi(·), ui(·)) ∈ Ai(t, x), for any ϵ > 0 and ω ∈ Ω,

and using the property of supremum, there exists

Li ≡ (ci,ω,ϵ(·), ki,ω,ϵ(·), qi,ω,ϵ(·), ui,ω,ϵ(·)) ∈ Ai

(
s,Xπi

t,x(s, ω)
)
,

where

J̃i
(
s,Xπi

t,x(s);Li,ω,ϵ(·)
)
≥ Vi

(
s,Xπi

t,x(s)
)
− ϵ.

Let

L∗
i (u) :=

(ci(·), ki(·), qi(·), ui(·)) , if u ∈ [t, s],

Li,ω,ϵ(u), if u ∈ [s, T ].

Notice that X
L∗
i

t,x (T ) = X
Li,ω,ϵ

s,X
πi
t,x(s)

(T ) a.s., then from the functional in equation (4.7), we

get

Vi(t, x) ≥ J̃i (t, x;L∗
i (·)) .

That is,

Et

[
e−

∫ s
t λi(v)dv

(∫ T

s

(
wie

−δu(1− Fi(u, s))Li(u, ci,ω,ϵ(u))

+ w3e
−δτifi(u, s)

(
Y (u,Υ

Li,ω,ϵ

t,x (u)) + Y (u, Ῡ
Li,ω,ϵ

t,x (u))
))

du

+ w4e
−δT (1− Fi(T, s))R(X

Li,ω,ϵ

s,X
πi
t,x(s)

(T ))

)
+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]

≥ Et

[
e−

∫ s
t λi(v)dv

(
Vi

(
s,Xπi

t,x(s)
)
− ϵ
)

+

∫ s

t

(
wie

−δu(1− Fi(u, t))Li(u, ci(u))

+ w3e
−δτifi(u, t)

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.
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The above inequality holds for any πi(·) = (ci(·), ki(·), qi(·), ui(·)) ∈ Ai(t, x) and ϵ > 0,

which means

Vi(t, x) ≥ sup
πi∈Ai(t,x)

Et

[
e−

∫ s
t λi(v)dvVi

(
s,Xπi

t,x(s)
)
+

∫ s

t

(
wie

−δuF+
i (u, t)Li(u, ci(u))

+ w3e
−δτifi(u, t)×

(
Y (u,Υπi

t,x(u)) + Y (u, Ῡπi
t,x(u))

))
du

∣∣∣∣ Ft

]
.

(4.9)

Hence, from inequalities (4.8) and (4.9), we conclude the proof of Lemma 4.3.

Dynamic programming principle helps us to write a second-order nonlinear partial dif-

ferential equation whose solution is the value function of the optimal control problem

under consideration.

4.2 Hamilton–Jacobi–Bellman equation (HJB)

We will use the DPP obtained in Lemma 4.3 to derived the following PDE, which is

known as Hamilton–Jacobi–Bellman equation (HJB), and whose solution is the value

function for the optimal control problem under consideration.

Theorem 4.4. (HJB-Equation) Suppose that the maximum expected utility Vi(t, x) ∈
C1,2([0, T ]×R,R) for i = 1, 2. Then, Vi(t, x) must satisfies the following HJB equation Vi,t(t, x)− λi(t)Vi(t, x) + sup

(ci,ki,qi,ui)
Hi(t, x;πi(·)) = 0, (t, x) ∈ [0, T ]× R,

Vi(T, x) = w4e
−δTR(x), x ∈ R, i = 1, 2.

Where the Hamilltonian Hi given by

Hi(t, x;πi(·)) =
[
r(t)x+ (µ(t)− r(t))ui(t)− ci(t)− ki(t)− qi(t) + Ii(t)

]
Vi,x(t, x)

+
1

2
σ2(t)u2i (t)Vi,xx(t, x) + λi(t)w3e

−δt

(
Y

(
t, x+

ki(t)

ηi(t)

)
+ Y

(
t,
qi(t)

hi(t)

))
+ wie

−δtLi (t, ci) ,

Vi,t and Vi,x denote first-order partial derivatives with respect to t and x, respectively,

and Vi,xx denotes a second-order derivative with respect to x. Moreover,

π∗
i (·) = (c∗i (·), k∗i (·), q∗i (·), u∗i (·)) ∈ Ai(t, x),
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whose wealth X∗ is optimal if and if for s ∈ [t, T ] we have

Vi,t (s,X
∗
i (s))− λi(s)Vi (s,X

∗
i (s)) +Hi (s,X

∗
i (s);π

∗
i ) = 0. (4.10)

Proof. Apply s = t+h in the DPP from equation(4.5). By Itô’s formula from Theorem

2.56, we can get

Vi (t+ h,X(t+ h)) = Vi(t, x) +

∫ t+h

t

(
Vi,t(s,X(s)) + Vi,x(s,X(s))

×
[
r(s)Xi(s) + (µ(s)− r(s))ui(s)− ci(s)− ki(s)− qi(s) + Ii(s)

]
(4.11)

+
1

2
Vi,xx(s,X(s))σ2(s)u2i (s)

)
ds+

∫ t+h

t
Vi,x(s,X(s))σ(s)ui(s)dW (s).

Note that by Taylor series expansion, and since h is small we can get that

e−
∫ t+h
t λi(v)dv = 1− λi(h) +O(h2), (4.12)

where O(h2) represents an error of order two. Using equation (4.12) and Lemma 4.3 we

get

0 = sup
(ci,ki,qi,ui)

Et

[(
1− λi(t)h+O(h2)

)
Vi(t+ h,Xi(t+ h))− Vi(t, x)

+

∫ t+h

t

(
wie

−δt(1− Fi(u, t))Li (t, ci(u))

+ w3e
−δtfi(u, t)

(
Y

(
t, x+

ki (τi)

ηi (τi)

)
+ Y

(
t,
qi (τi)

hi (τi)

)))
du | Ft

]
.

Now substitute equation (4.11) into the above equation, divide the result by h, and let

h goes to zero to obtain

0 = sup
(ci,ki,qi,ui)

Et

[
Vi,t(t, x)− λi(t)Vi(t, x)

+ [r(t)x+ (µ(t)− r(t))ui(t)− ci(t)− ki(t)− qi(t) + Ii(t)]Vi,x(t, x)

+
1

2
σ2(t)u2i (t)Vi,xx(t, x) + wie

−δtLi (t, ci(u))

+ λi(t)w3e
−δt

(
Y

(
t, x+

ki(t)

ηi(t)

)
+ Y

(
t,
qi(t)

hi(t)

))]
.

Since Vi,t(t, x)−λi(t)Vi(t, x) doesn’t depend on πi, it follows that the first part of HJB

theorem holds.
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Now we will prove the second part of the HJB theorem given in equation (4.10).

Let (ci(·), ki(·), qi(·), ui(·)) ∈ Ai(t, x) with the corresponding wealth Xi, applying Itô’s

formula to

e−
∫ T
t λi(v)dvVi(s,Xi(s))

to obtain

Vi(t, x) = e−
∫ T
t λi(v)dvR(Xi(T ))−

∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t(u,Xi(u))

+ Vi,x(u,Xi(u))

(
r(u)Xi(u) + (µ(u)− r(u))ui(u)− ci(u)− ki(u)− qi(u) + Ii(u)

)
− λi(u)Vi(u,Xi(u)) +

1

2
Vi,xx(u,Xi(u))σ

2(u)u2i (u)

)
du

−
∫ T

t
e−

∫ u
t λi(v)dvVi,x(u,Xi(u))σ(u)ui(u)dW (u).

Now, take the expectation of the above equation to get

Vi(t, x) = Et

[
e−

∫ T
t λi(v)dvR(Xi(T ))−

∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t(u,Xi(u))

+ Vi,x(u,Xi(u))

(
r(u)Xi(u) + (µ(u)− r(u))ui(u)− ci(u)− ki(u)− qi(u) + Ii(u)

)
− λi(u)Vi(u,Xi(u)) +

1

2
Vi,xx(u,Xi(u))σ

2(u)u2i (u)

)
du

−
∫ T

t
e−

∫ u
t λi(v)dvVi,x(u,Xi(u))σ(u)ui(u)dW (u)

]
.

Using the property of linearity of expectation and substituting the value of the functional

J̃i(t, x; ci, ki, qi, ui) from equation (4.1), we get

Vi(t, x) = J̃i(t, x; ci, ki, qi, ui)− Et

[∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t(u,Xi(u))

− λi(u)Vi(u,Xi(u)) +Hi(u,Xi(u); ci, ki, qi, ui)

)
du

]
.

(4.13)

Thus, from equation (4.13) we notice that (since the controls are arbitrary)

Vi(t, x) = J̃i (t, x; c
∗
i , k

∗
i , q

∗
i , u

∗
i )− Et

[∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t (u,X

∗
i (u))

−λi(u)Vi (u,X
∗
i (u)) +Hi (u,X

∗
i (u); c

∗
i , k

∗
i , q

∗
i , u

∗
i )

)
du

]
.

Since Vi(t, x)− J̃i (t, x; c
∗
i , k

∗
i , q

∗
i , u

∗
i ) ≥ 0, we conclude that

Vi,t (s,X
∗
i (s))− λi(s)Vi (s,X

∗
i (s)) +Hi (s,X

∗
i (s);π

∗
i ) ≤ 0. (4.14)
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Now to prove the other direction, since Vi(t, x) is the maximum expected value, it follows

that from equation (4.13)

Vi(t, x) ≥ J̃i(t, x; ci, ki, qi, ui)− Et

[∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t(u,Xi(u))

− λi(u)Vi(u,Xi(u)) + sup
(ci,ki,qi,ui)∈Ai(t,x)

Hi(u,Xi(u); ci, ki, qi, ui)

)
du

]
.

(4.15)

From inequality (4.15), we obtain

Vi(t, x) ≥ J̃i (t, x; c
∗
i , k

∗
i , q

∗
i , u

∗
i )− Et

[ ∫ T

t
e−

∫ u
t λi(v)dv

(
Vi,t (u,X

∗
i (u))

− λi(u)Vi (u,X
∗
i (u)) +Hi (u,X

∗
i (u); c

∗
i , k

∗
i , q

∗
i , u

∗
i )

)
du

]
.

Since Vi(t, x) is the maximum expected value, that is

Vi(t, x) = J̃i (t, x, c
∗
i , k

∗
i , q

∗
i , u

∗
i ) ,

it follows that

Vi,t (s,X
∗
i (s))− λi(s)Vi (s,X

∗
i (s)) +Hi (s,X

∗
i (s);π

∗
i ) ≥ 0. (4.16)

Hence, combining inequalities (4.14) and (4.16) we conclude the result. This completes

the proof.

4.3 Optimal strategies in terms of the value function

In this section, we will find the optimal strategies such as the optimal consumption c∗i (·),
optimal insurance premium k∗i (·), optimal welfare policy q∗i (·), and optimal portfolio

u∗i (·) in terms of the value function Vi(t, x) for the wage-earner i, where i = 1, 2.

Based on Theorem 4.4 we will determine the optimal strategies c∗i (·), k∗i (·), q∗i (·) and u∗i (·)
in terms of the value function Vi,x(t;x) in the next result. To proceed we first introduce

some properties for the utility functions Li(t; ·) and Y (t; ·). From Assumption 4 we

have that Li(t, ·) and Y (t, ·) are strictly concave with respect to their second arguments.

Hence, Li,x(t, ·) and Yx(t, ·) must be invertible for each t ∈ [0, T ], where Li,x(t, ·) and

Yx(t, ·) are the derivatives of Li(t, ·) and Y (t, ·) with respect to their second arguments,

respectively. Let

N1 : [0, T ]× R+
0 → R+

0 ,
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and

N2 : [0, T ]× R+
0 → R+

0 ,

to be the unique inverse functions such that

N1(t, Li,x(t, x)) = x and Li,x(t,N1(t, x)) = x,

N2(t, Yx(t, x)) = x and Yx(t,N2(t, x)) = x, (4.17)

for all t ∈ [0, T ] and x ∈ R+
0 .

Next theorem give us the formula of the optimal strategies that we are looking for.

Theorem 4.5. Suppose that the Assumptions 1-4 are hold and that the value func-

tion Vi ∈ C1,2([0, T ] × R,R). Then the Hamilltonian Hi has a unique maximum π∗
i =

(c∗i (·), k∗i (·), q∗i (·), u∗i (·)) ∈ Ai(t, x), and the optimal strategies are given by

c∗i (t, x) = N1

(
t,
Vi,x(t, x)

wie−δt

)
,

k∗i (t, x) =

[
N2

(
t,
ηi(t)Vi,x (t, x)

λi(t)w3e−δt

)
− x

]
ηi (t) ,

q∗i (t, x) = N2

(
t,
hi (t)Vi,x (t, x)

λi(t)w3e−δt

)
hi (t) ,

u∗i (t, x) = −(µ(t)− r(t))Vi,x(t, x)

Vi,xx(t, x)σ2(t)
,

where N1 and N2 are as given in (4.17), respectively.

Proof. An optimal admissible strategy (c∗i , k
∗
i , q

∗
i , u

∗
i ) ∈ Ai(t, x) whose wealth process

X∗
i is satisfies identity (4.10) of Theorem 4.4.

Hence, it is enough to consider the following four independent conditions in maximizing

Hi

sup
(ci,ki,qi,ui)∈(R+)4

Hi(t, x; ci, ki, qi, ui) = sup
ci∈R+

{
wie

−δtLi (t, ci)− ci(t)Vi,x(t, x)

}
+ sup

ki∈R+

{
λi(t)w3e

−δtY

(
t, x+

ki(t)

ηi(t)

)
− ki(t)Vi,x(t, x)

}
+ sup

qi∈R+

{
λi(t)w3e

−δtY

(
t,
qi(t)

hi(t)

)
− qi(t)Vi,x(t, x)

}
(4.18)

+ sup
ui∈R+

{
1

2
σ2(t)u2iVi,xx(t, x) + (µ(t)− r(t))ui(t)Vi,x(t, x)

}
+(r(t)x+ Ii(t))Vi,x(t, x).
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We derive Hi with respect the variables c∗i , k
∗
i , q

∗
i and u∗i as they follow non constrained

maximization problems, respectively, we obtain the following first order conditions

wie
−δtLc∗i

(t, c∗i )− Vi,x(t, x) = 0,

λi(t)

ηi(t)
w3e

−δtYx

(
t, x+

k∗i (t)

ηi(t)

)
− Vi,x(t, x) = 0, (4.19)

λi(t)

hi(t)
w3e

−δtYx

(
t,
q∗i (t)

hi(t)

)
− Vi,x(t, x) = 0,

σ2(t)u∗i (t, x)Vi,xx(t, x) + (µ(t)− r(t))Vi,x(t, x) = 0.

Using the inverse functions stated in (4.17), we solve equations (4.19) for the correspond-

ing control variables as

c∗i (t, x) = N1

(
t,
Vi,x(t, x)

wie−δt

)
,

k∗i (t, x) =

[
N2

(
t,
ηi(t)Vi,x (t, x)

λi(t)w3e−δt

)
− x

]
ηi (t) ,

q∗i (t, x) = N2

(
t,
hi (t)Vi,x (t, x)

λi(t)w3e−δt

)
hi (t) ,

u∗i (t, x) = −(µ(t)− r(t))Vi,x(t, x)

Vi,xx(t, x)σ2(t)
.

We evaluate the second derivative to each one of the variables to get

Hi,cici(t, x;π
∗
i ) = wie

−δtLcici(t, c
∗
i ),

Hi,kiki(t, x;π
∗
i ) =

λi(t)

η2i (t)
w3e

−δtYkiki

(
t, x+

k∗i (t)

ηi(t)

)
,

Hi,qiqi(t, x;π
∗
i ) =

λi(t)

h2i (t)
w3e

−δtYqiqi

(
t,
q∗i (t)

hi(t)

)
,

Hi,uiui(t, x;π
∗
i ) = Vi,xx(t, x)σ

2(t).

Using the Assumption 4 about the strict concavity of the functions Li and Y with

respect to their second variables, we conclude that the optimal strategies c∗i , k
∗
i and

q∗i are optimal. Now we will show that Hi,uiui(t, x; v
∗
i ) is negative. if Vi,xx(t, x) > 0,

then from the HJB equation Hi has no upper bound and hence, either Vi,t(t, x) = ∞
or Vi(t, x) = ∞, which contradicts the assumption about smoothness of Vi. Therefore,

Vi,xx(t, x) < 0 and so Hi,uiui is negative. Hence, Hi has a unique regular interior

maximum and we conclude the proof.
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4.4 The power utility function

In this section, we will assume the following power utility functions for the wage-earner

i, i = 1, 2,:

Li(t, ci) =
(ci)

γ

γ
,

Y

(
t, x+

ki(t)

ηi(t)

)
=

(
x+ ki(t)

ηi(t)

)γ
γ

, (4.20)

Y

(
t,
qi(t)

hi(t)

)
=

(
qi(t)
hi(t)

)γ
γ

,

where γ < 1 denotes the risk parameter and not equal to zero. We will use these utilities

to derive an explicit solutions for the problem under consideration.

4.5 Explicit solution

In the following theorem, we will derive an explicit solution for the optimal controls by

using the optimal strategies obtained in equation (4.19) and applying the power utilities,

we get the following explicit theorem after the first death for the wage-earner i.

Theorem 4.6. Given the power utility functions in equation (4.20). Assume the value

function corresponding to wage-earner i after T1 is given by

Vi(t, x) = e−δtai(t)

γ
(x+ bi(t))

γ ,

where T1 = τ3−i, i = 1, 2.

Then the optimal strategies are given by

ci(t, x) = w
− 1

γ−1

i
1

li(t)
(x+ bi(t)) ,

ui(t, x) = − µ(t)−r(t)
σ2(t)(γ−1)

(x+ bi(t)) ,

ki(t, x) = ηi(t)

((
ηi(t)

λi(t)w3

) 1
γ−1 1

li(t)
(x+ bi(t))− x

)
,

qi(t, x) = hi(t)
(

hi(t)
λi(t)w3

) 1
γ−1 1

li(t)
(x+ bi(t)) ,
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where
ai(t) =l1−γ

i (t),

bi(t) =

∫ T

t
Ii(s)e

−
∫ s
t (r(z)+ηi(z))dzds,

li(t) =w
1

1−γ

4 e−
∫ T
t hi(s)ds +

∫ T

t
e−

∫ s
t hi(z)dzgi(s)ds,

hi(t) =
1

1− γ

(
δ + λi(t)− γ (r(t) + ηi(t))−

γ

2

(µ(t)− r(t))2

σ2(t)(1− γ)

)
,

gi(t) =w
− 1

γ−1

i +

 η
γ

γ−1

i + h
γ

γ−1

i

(λi(t)w3)
1

γ−1

 .

Proof. We start the proof by noticing from condition (4.19), we get

Vi,x(t, x) = wie
−δtLci (t, c

∗
i ) .

Substitute the value of Lci (t, c
∗
i ) we get

Vi,x(t, x) = wie
−δt (c∗i )

γ−1 .

After rearrange the above equation for c∗i (t, x) we get

c∗i (t, x) =

(
Vi,x(t, x)e

δt

wi

) 1
γ−1

. (4.21)

Substituting the value of Yx in equation (4.19) to get

Vi,x(t, x) =
λi(t)

ηi(t)
w3e

−δt

(
x+

k∗i (t)

ηi(t)

)γ−1

. (4.22)

Rearranging equation (4.22) we get

k∗i (t, x) =

((
ηi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

− x

)
ηi(t). (4.23)

Similarly, to find the optimal control q∗i (t, x). We use again equation (4.19), we obtain

Vi,x(t, x) =
λi(t)

hi(t)
w3e

−δt

(
q∗i (t)

hi(t)

)γ−1

. (4.24)

Rearranging equation (4.24), we get

q∗i (t, x) =

(
hi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

hi(t). (4.25)
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Similarly, from equation (4.19), we have that

u∗i (t, x) = −(µ(t)− r(t))Vi,x(t, x)

σ2(t)Vi,xx(t, x)
. (4.26)

Now we are going to find the solution for the HJB equation. We will substitute the

optimal strategies c∗i , k
∗
i , q

∗
i and u∗i from equations (4.21), (4.23), (4.25) and (4.26),

respectively, in the HJB equation, but we will do that in a separated steps as the

following

Step 1: Substitute the values of c∗i from equation (4.21) and Li(t, c
∗
i ) from equation

(4.20) in equation (4.18), to get

sup
ci∈R+

{
wie

−δtLi (t, ci)− ci(t)Vi,x(t, x)

}

=
wie

−δt

γ

(
Vi,x(t, x)e

δt

wi

) γ
γ−1

−
(
Vi,x(t, x)e

δt

wi

) 1
γ−1

Vi,x(t, x).

Rearrange the above terms, we get

sup
ci∈R+

{
wie

−δtLi (t, ci)− ci(t)Vi,x(t, x)

}
=

(
1− γ

γ

)(
eδt

wi

) 1
γ−1
(
Vi,x(t, x)

) γ
γ−1

. (4.27)

Step 2: Substitute the value of u∗i from equation (4.26) in equation (4.18), to get

sup
ui∈R+

{
1

2
σ2(t)u2iVi,xx(t, x) + (µ(t)− r(t))ui(t)Vi,x(t, x)

}
=
σ2(t)

2

(
−(µ(t)− r(t))Vi,x(t, x)

σ2(t)Vi,xx(t, x)

)2

Vi,xx(t, x)

+(µ(t)− r(t))

(
−(µ(t)− r(t)) (Vi,x(t, x))

2

σ2(t)Vi,xx(t, x)

)
.

Rearrange the above terms, we obtain

sup
ui∈R+

{
1

2
σ2(t)u2iVi,xx(t, x) + (µ(t)− r(t))ui(t)Vi,x(t, x)

}
= −(µ(t)− r(t))2 (Vi,x(t, x))

2

2σ2(t)Vi,xx(t, x)
.

(4.28)
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Step 3: Substitute the value of Y from equation (4.20) in equation (4.18), we get

sup
ki∈R+

{
λi(t)w3e

−δtY

(
t, x+

ki(t)

ηi(t)

)
− ki(t)Vi,x(t, x)

}

=
λi(t)w3e

−δt

γ

(
x+

k∗i (t)

ηi(t)

)γ

− k∗i (t)Vi,x(t, x).

Substitute the value of k∗i from equation (4.23) in equation (4.18) to obtain

sup
ki∈R+

{
λi(t)w3e

−δtY

(
t, x+

ki(t)

ηi(t)

)
− ki(t)Vi,x(t, x)

}

=
λi(t)w3e

−δt

γ

(
x+

((
ηi(t)

λi(t)w3
Vi,x(t, x)e

δt
) 1

γ−1 − x

)
ηi(t)

ηi(t)

)γ

−

((
ηi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

− x

)
ηi(t)Vi,x(t, x).

That is,

sup
ki∈R+

{
λi(t)w3e

−δtY

(
t, x+

ki(t)

ηi(t)

)
− ki(t)Vi,x(t, x)

}
=
λi(t)w3e

−δt

γ

(
ηi(t)

λi(t)w3
Vi,x(t, x)e

δt

) γ
γ−1

−
(

ηi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

ηi(t)Vi,x(t, x) + xηi(t)Vi,x(t, x).

Rearrange the terms to get

sup
ki∈R+

{
λi(t)w3e

−δtY

(
t, x+

ki(t)

ηi(t)

)
− ki(t)Vi,x(t, x)

}

=xηi(t)Vi,x(t, x) +

(
1− γ

γ

)
e

δt
γ−1

(
ηi(t)

(λi(t)w3)
1
γ

Vi,x(t, x)

) γ
γ−1

.

(4.29)

Step 4: Substitute the value of Y from equation (4.20) in equation (4.18) we get that

sup
qi∈R+

{
λi(t)w3e

−δtY

(
t,
qi(t)

hi(t)

)
− qi(t)Vi,x(t, x)

}

=
λi(t)w3e

−δt

γ

(
q∗i (t)

hi(t)

)γ

− q∗i (t)Vi,x(t, x).

Substitute the value of q∗i from equation (4.25) in equation (4.18) to get
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sup
qi∈R+

{
λi(t)w3e

−δtY

(
t,
qi(t)

hi(t)

)
− qi(t)Vi,x(t, x)

}

=
λi(t)w3e

−δt

γ

(( hi(t)
λi(t)w3

Vi,x(t, x)e
δt
) 1

γ−1
hi(t)

hi(t)

)γ

−
(

hi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

hi(t)Vi,x(t, x).

That is,

sup
qi∈R+

{
λi(t)w3e

−δtY

(
t,
qi(t)

hi(t)

)
− qi(t)Vi,x(t, x)

}

=
λi(t)w3e

−δt

γ

(
hi(t)

λi(t)w3
Vi,x(t, x)e

δt

) γ
γ−1

−
(

hi(t)

λi(t)w3
Vi,x(t, x)e

δt

) 1
γ−1

hi(t)Vi,x(t, x).

Rearrange the terms to get

sup
qi∈R+

{
λi(t)w3e

−δtY

(
t,
qi(t)

hi(t)

)
− qi(t)Vi,x(t, x)

}

=

(
1− γ

γ

)
e

δt
γ−1

(
hi(t)

(λi(t)w3)
1
γ

Vi,x(t, x)

) γ
γ−1

.

(4.30)

After substitute the values from equations (4.27), (4.28), (4.29) and (4.30) in equation

(4.18) these computations lead to

sup
πi∈(R+)4

Hi(t, x, πi) =

(
1− γ

γ

)(
eδt

wi

) 1
γ−1
(
Vi,x(t, x)

) γ
γ−1

+ (r(t)x+ Ii(t))Vi,x(t, x)

+

(
1− γ

γ

)
e

δt
γ−1

(
ηi(t)

(λi(t)w3)
1
γ

Vi,x(t, x)

) γ
γ−1

+ xηi(t)Vi,x(t, x)

+

(
1− γ

γ

)
e

δt
γ−1

(
hi(t)

(λi(t)w3)
1
γ

Vi,x(t, x)

) γ
γ−1

− (µ(t)− r(t))2 (Vi,x(t, x))
2

2σ2(t)Vi,xx(t, x)
.

Thus,

sup
πi∈(R+)4

Hi(t, x, πi) =

(
1− γ

γ

)
e

δt
γ−1

(
Vi,x(t, x)

) γ
γ−1

(
w

− 1
γ−1

i +

 η
γ

γ−1

i + h
γ

γ−1

i

(λi(t)w3)
1

γ−1

)

+

(
r(t)x+ ηi(t)x+ Ii(t)

)
Vi,x(t, x)−

(µ(t)− r(t))2 (Vi,x(t, x))
2

2σ2(t)Vi,xx(t, x)
.
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Now substitute in the HJB equation from Theorem 4.4 to obtain

0 = Vi,t(t, x)− λi(t)Vi(t, x)

+

(
1− γ

γ

)
e

δt
γ−1

(
Vi,x(t, x)

) γ
γ−1

(
w

− 1
γ−1

i +

 η
γ

γ−1

i + h
γ

γ−1

i

(λi(t)w3)
1

γ−1

)

+

(
r(t)x+ ηi(t)x+ Ii(t)

)
Vi,x(t, x)−

(µ(t)− r(t))2 (Vi,x(t, x))
2

2σ2(t)Vi,xx(t, x)
.

To make this simple, consider

gi(t) = w
− 1

γ−1

i +

 η
γ

γ−1

i + h
γ

γ−1

i

(λi(t)w3)
1

γ−1

 .

Then the HJB equation simplifies to

0 = Vi,t(t, x)− λi(t)Vi(t, x) +

(
1− γ

γ

)
e

δt
γ−1

(
Vi,x(t, x)

) γ
γ−1

gi(t)

+

(
r(t)x+ ηi(t)x+ Ii(t)

)
Vi,x(t, x)−

(µ(t)− r(t))2 (Vi,x(t, x))
2

2σ2(t)Vi,xx(t, x)
, (4.31)

with the terminal condition

Vi(T, x) = w4e
−δTR(x).

Now to solve equation (4.31), recall the ansatz function from the statement of this

theorem

Vi(t, x) = e−δtai(t)

γ
(x+ bi(t))

γ .

Compute the partial derivatives Vi,t, Vi,x and Vi,xx

Vi,t(t, x) = e−δtai(t)

(
x+ bi(t)

)γ−1dbi(t)

dt
+

(
x+ bi(t)

)γ

e−δt

γ

(
dai(t)

dt
− δai(t)

)
,

Vi,x(t, x) = e−δtai(t) (x+ bi(t))
γ−1 , (4.32)

Vi,xx(t, x) = (γ − 1)e−δtai(t) (x+ bi(t))
γ−2 .
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Substitute the above partial derivatives in equation (4.31) to get that

0 = e−δtai(t)

(
x+ bi(t)

)γ−1dbi(t)

dt
+

(
x+ bi(t)

)γ

e−δt

γ

(
dai(t)

dt
− δai(t)

)

− λi(t)e
−δtai(t)

γ
(x+ bi(t))

γ +

(
1− γ

γ

)
e

δt
γ−1

(
e−δtai(t) (x+ bi(t))

γ−1

) γ
γ−1

gi(t)

+

(
r(t)x+ ηi(t)x+ Ii(t)

)
e−δtai(t) (x+ bi(t))

γ−1

−
(µ(t)− r(t))2

(
e−δtai(t) (x+ bi(t))

γ−1

)2

2σ2(t)(γ − 1)e−δtai(t) (x+ bi(t))
γ−2 .

Divide the last equation by (x+ bi(t))
γ we get

0 =
e−δtai(t)

(x+ bi(t))

dbi(t)

dt
+

e−δt

γ

(
dai(t)

dt
− δai(t)

)

− λi(t)e
−δtai(t)

γ
+

(
1− γ

γ

)
e−δt

(
ai(t)

) γ
γ−1

gi(t)

+

(
r(t)x+ ηi(t)x+ Ii(t)

)
e−δtai(t)

(x+ bi(t))
− (µ(t)− r(t))2e−δtai(t)

2σ2(t)(γ − 1)
.

Adding and subtracting the terms r(t)ai(t)bi(t)e
−δt

x+bi(t)
and ηi(t)ai(t)bi(t)e

−δt

x+bi(t)
to the above equa-

tion, to obtain

0 =
e−δtai(t)

(x+ bi(t))

dbi(t)

dt
+

e−δt

γ

(
dai(t)

dt
− δai(t)

)
− λi(t)e

−δtai(t)

γ

+
r(t)xai(t)e

−δt

(x+ bi(t))
+

r(t)ai(t)bi(t)e
−δt

x+ bi(t)
− r(t)ai(t)bi(t)e

−δt

x+ bi(t)
+

Ii(t)e
−δtai(t)

x+ bi(t)

+
ηi(t)xai(t)e

−δt

(x+ bi(t))
+

ηi(t)ai(t)bi(t)e
−δt

x+ bi(t)
− ηi(t)ai(t)bi(t)e

−δt

x+ bi(t)

+

(
1− γ

γ

)
e−δt

(
ai(t)

) γ
γ−1

gi(t)−
(µ(t)− r(t))2e−δtai(t)

2σ2(t)(γ − 1)
.
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Note that the above differential equation can be separated into two independent bound-

ary value problems for ai and bi as follows

0 =
e−δt

γ

(
dai(t)

dt
− δai(t)

)
− λi(t)e

−δtai(t)

γ

+
r(t)ai(t)e

−δt(x+ bi(t))

x+ bi(t)
+

ηi(t)ai(t)e
−δt(x+ bi(t))

x+ bi(t)
(4.33)

+

(
1− γ

γ

)
e−δt

(
ai(t)

) γ
γ−1

gi(t)−
(µ(t)− r(t))2e−δtai(t)

2σ2(t)(γ − 1)
,

and

e−δtai(t)

(x+ bi(t))

dbi(t)

dt
+

Ii(t)e
−δtai(t)

x+ bi(t)
− r(t)ai(t)bi(t)e

−δt

x+ bi(t)
− ηi(t)ai(t)bi(t)e

−δt

x+ bi(t)
= 0. (4.34)

Divide the equation (4.33) by e−δt and rearrange the terms, we obtain

0 =
1

γ

dai(t)

dt
+

(
1− γ

γ

)(
ai(t)

) γ
γ−1

gi(t)

+

(
− δ

γ
− λi(t)

γ
+ r(t) + ηi(t)−

(µ(t)− r(t))2

2σ2(t)(γ − 1)

)
ai(t), (4.35)

ai(T ) = w4.

Multiply equation (4.34) by x+bi(t)
ai(t)e−δt to get

dbi(t)

dt
+ Ii(t) +

(
− r(t)− ηi(t)

)
bi(t) = 0,

bi(T ) = 0. (4.36)

To solve equation (4.35) we assume its solution has the form

ai(t) = (li(t))
1−γ . (4.37)

Differentiate ai(t) in equation (4.37) with respect to time t, we get

dai(t)

dt
= (1− γ)

(
li(t)

)−γ dli(t)

dt
. (4.38)

Substitute equation (4.38) in equation (4.35) to obtain

0 =
1

γ
(1− γ)

(
li(t)

)−γ dli(t)

dt
+

(
1− γ

γ

)
(li(t))

−γgi(t)

+

(
− δ

γ
− λi(t)

γ
+ r(t) + ηi(t)−

(µ(t)− r(t))2

2σ2(t)(γ − 1)

)
(li(t))

1−γ .
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The above equation can be rewritten as

dli(t)

dt
− hi(t)li(t) + gi(t) = 0, (4.39)

li(T ) = w
1

1−γ

4 ,

where

hi(t) =
1

1− γ

(
δ + λi(t)− γ (r(t) + ηi(t))−

γ

2

(µ(t)− r(t))2

σ2(t)(1− γ)

)
.

Equation (4.39) is linear and 1st order ODE, then we can solve it explicitly by using the

integrating factor method to get

li(t) = e
∫ t
T hi(s)ds

(∫ t

T
−gi(s)e

−
∫ s
T hi(z)dzds+ c1

)
.

Using the condition li(T ) = w
1

1−γ

4 we obtain

li(t) = w
1

1−γ

4 e−
∫ T
t hi(s)ds +

∫ T

t
e−

∫ s
t hi(z)dzgi(s)ds.

Substitute the value of li(t) in equation (4.37) we get

ai(t) =

(
w

1
1−γ

4 e−
∫ T
t hi(s)ds +

∫ T

t
e−

∫ s
t hi(z)dzgi(s)ds

)1−γ

.

To find a solution for the boundary value problem (4.36), it is again 1st order linear

ODE and it can be solved also using the integrating factor method as

bi(t) = e−
∫ t
T (−r(z)−ηi(z))dz

(
−
∫ t

T
Ii(s)e

∫ s
T (−r(z)−ηi(z))dzds+ c2

)
,

Since bi(T ) = 0, then c2 = 0. Consequently

bi(t) =

∫ T

t
Ii(s)e

−
∫ s
t (r(z)+ηi(z))dzds.

From equation (4.21), we know that

c∗i (t, x) =

(
Vi,x(t, x)e

δt

wi

) 1
γ−1

.
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Substitute the value of function Vi,x(t, x) to get

c∗i (t, x) =

(
e−δtai(t) (x+ bi(t))

γ−1 eδt

wi

) 1
γ−1

=

(
ai(t) (x+ bi(t))

γ−1

wi

) 1
γ−1

.

Substitute the value of ai(t) from equation (4.37) to get

c∗i (t, x) = w
− 1

γ−1

i

1

li(t)
(x+ bi(t)) .

Also from equation (4.26), we know this

u∗i (t, x) = −(µ(t)− r(t))Vi,x(t, x)

σ2(t)Vi,xx(t, x)
.

Substituting the value of Vi,x(t, x) and Vi,xx(t;x) from (4.32) in the above equation we

get

u∗i (t, x) = −(µ(t)− r(t))e−δtai(t) (x+ bi(t))
γ−1

σ2(t)(γ − 1)e−δtai(t) (x+ bi(t))
γ−2 .

That is,

u∗i (t, x) = − µ(t)− r(t)

σ2(t)(γ − 1)
(x+ bi(t)) .

Similarly, substitute the value of Vi,x(t) from (4.32) in equation (4.23), to get

k∗i (t, x) =

((
ηi(t)

λi(t)w3
e−δtai(t) (x+ bi(t))

γ−1 eδt
) 1

γ−1

− x

)
ηi(t).

Thus,

k∗i (t, x) = ηi(t)

((
ηi(t)

λi(t)w3

) 1
γ−1 1

li(t)
(x+ bi(t))− x

)
.

Finally, substitute the value of Vi,x(t) from (4.32) in equation (4.25), to get

q∗i (t, x) =

(
hi(t)

λi(t)w3
e−δtai(t) (x+ bi(t))

γ−1 eδt
) 1

γ−1

hi(t).

That is,

q∗i (t, x) = hi(t)

(
hi(t)

λi(t)w3

) 1
γ−1 1

li(t)
(x+ bi(t)) ,

which completes the proof.
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Chapter 5

Optimization problem before the first

death

In this chapter, we will consider the optimization problem before first death when the two

wage earners are contributing in the social security system while participating in the life-

insurance markets. We will use stochastic mortality models for dependent lives, mainly

Copula model, to handle a stochastic optimal control problem under consideration.

To study the optimization problem where the two wage earners are alive and to dis-

tinguish the strategies here from the strategies of the problem after first death as in

Chapter 4, we will use another notations c̄i(·), ūi(·), k̄i(·) and q̄i(·), for the represen-

tation of consumption, amount invested in the risky asset, life-insurance and welfare,

respectively.

5.1 Stochastic optimal control problem before the first

death

In this section, we will consider the optimal control problem for the two wage earners in

which neither of them dies before the retirement date and we find the optimal strategies

that maximize the expected utility for each agent, where both individuals are wage-

earners and contribute in the social security system with their partner nominated as the

beneficiary.
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The wealth process for two wage-earners before first death can be expressed as

X(t) =x0 +

∫ t

0

(
r(s)X(s) + (µ(s)− r(s))ū(s) +

2∑
i=1

(
−c̄i(s)− k̄i(s)− q̄i(s) + Ii(s)

))
ds

+

∫ t

0
σ(s)ū(s)dW (s),

(5.1)

where the wealth X(t) is as given in (3.11).

Differentiate equation (5.1) with respect to t we get the following differential form

dX(t) =

(
r(t)X(t) + (µ(t)− r(t)) ū(t) +

2∑
i=1

(
−c̄i(t)− k̄i(t)− q̄i(t) + Ii(t)

))
dt

+ σ(t)ū(t)dW (t).

5.2 Tower rule of conditional expectations

In this section, we will introduce some conditional densities of probability distributions

functions for our wage-earner. This will help us to formulate the optimal control under

consideration and state the desire results before first death.

Based on equations (3.5), (3.6), (3.7) and (3.8) the following lemma holds.

Lemma 5.1. For any s, s1, s2 ≥ t the conditional density functions can be written as

f1(s; t) =
f1(s)

1− F1(t)
,

f2(s; t) =
f2(s)

1− F2(t)
,

fT1(s; t) =
fT1(s)

1− FT1(t)
, (5.2)

f (s1, s2; t) =
f (s1, s2)

1− FT1(t)
. (5.3)

Proof. Recall F1(s; t) is the conditional probability for the first wage-earner time of

death to occur at time s conditional upon being alive at time t ≤ s. From (3.5) we have

F1(s; t) = P (τ1 ≤ s|τ1 > t)

=
P (τ1 ≤ s)

P (τ1 > t)

=
F1(s)

1− F1(t)
.

(5.4)
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Since f1(s; t) is the density function corresponds to the distribution function F1(s; t), it

follows that

f1(s; t) =
d

ds
F1(s; t). (5.5)

After substitute the value of F1(s; t) from equation (5.4) in equation (5.5) we get

f1(s; t) =
d

ds

(
F1(s)

1− F1(t)

)
=

1

1− F1(t)

d

ds
(F1(s)) .

=
f1(s)

1− F1(t)
,

where f1(s) is the density function corresponds to the distribution function F1(s).

Similarly, we derive the densities f2(s; t), fT1(s; t), f (s1, s2; t).

Proposition 5.1. Assume the joint probability distribution function of death times τ1

and τ2 is as defined in Definition 2.62 by

F (t, t) = C(F1(t), F2(t)),

where C(·, ·) is Copula function, then the distribution function for the time T1 is given

by

FT1(t) = F1(t) + F2(t)− F (t, t).

Proof. From Copula Definition 2.59 we have

F (t, t) = C(F1(t), F2(t))

= P (τ1 ≤ t, τ2 ≤ t) (5.6)

= P (τ1 ≤ t) + P (τ1 ≤ t)− P (τ1 < t, τ2 < t).

As we know that from equation (3.3) the marginal probability distribution function for

τi is Fi, and FT1(t) = P (τ1 < t, τ2 < t) is the distribution function for T1, so, equation

(5.6) becomes

F (t, t) = F1(t) + F2(t)− FT1(t). (5.7)

Rearrange equation (5.7) to get

FT1(t) = F1(t) + F2(t)− F (t, t).

This completes the proof.
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The following lemma helps us to state a DPP.

Lemma 5.2. Let F (·, ·) be the joint distribution function of death times τ1 and τ2

with corresponding density function f(·, ·). If τ1 and τ2 are independent of the natural

filtration generated by the Brownian motion W (·), then

J(t, x;π(·)) =
1

1− FT1(t)
Et

[ ∫ T

t
(1− FT1(s)) e

−δs

(
w1U (c̄1(s)) + w2U (c̄2(s))

)
ds

+

∫ T

t

(∫ ∞

z
f(s, z)ds

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz (5.8)

+

∫ T

t

(∫ ∞

s
f(s, z)dz

)
V2

(
s,X(s) +

k̄1(s)

η1(s)
+

q̄1(s)

h1(s)

)
ds

+ (1− FT1(T ))w4e
−δTU(X(T ))

]
.

Proof. Based on equation (3.14) we defined J(t, x;π) as

J(t, x;π(·)) = Et

[ ∫ τ1∧T

t
w1e

−δsU (c1(s)) ds

+

∫ τ2∧T

t
w2e

−δsU (c2(s)) ds+ w31{τ1∨τ2≤T}e
−δ(τ1∨τ2)

×

(
U

(
X (τ1 ∨ τ2) +

2∑
i=1

ki (τi)

ηi (τi)
1{τi=τ1∨τ2}

)
+ U

(
2∑

i=1

qi (τi)

hi (τi)
1{τi=τ1∨τ2}

))

+ w41{τ1∨τ2>T}e
−δTU(X(T ))

]
.

(5.9)

Start with the first two terms, we can separate the consumption integrals as follows∫ τ1∧T

t
w1e

−δsU (c1(s)) ds+

∫ τ2∧T

t
w2e

−δsU (c2(s)) ds

=

∫ T1∧T

t
w1e

−δsU (c̄1(s,X(s))) ds+

∫ T1∧T

t
w2e

−δsU (c̄2(s,X(s))) ds

+ 1{T1=τ2<τ1,T1≤T}

∫ τ1∧T

T1

w1e
−δsU (c∗1(s,X(s))) ds (5.10)

+ 1{T1=τ1<τ2,T1≤T}

∫ τ2∧T

T1

w2e
−δsU (c∗2(s,X(s))) ds.
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Now, the third term can be written as

1{τ1∨τ2≤T}e
−δ(τ1∨τ2)

×

(
U
(
X (τ1 ∨ τ2) +

∑2
i=1

ki(τi)
ηi(τi)

1{τi=τ1∨τ2}

)
+ U

(∑2
i=1

qi(τi)
hi(τi)

1{τi=τ1∨τ2}

))

= 1{T1=τ2<τ1≤T}e
−δτ1

(
U
(
X (τ1) +

k∗1(τ1,X(τ1))
η1(τ1)

)
+ U

(
q∗1(τ1,X(τ1))

h1(τ1)

))
(5.11)

+1{T1=τ1<τ2≤T}e
−δτ2

(
U
(
X (τ2) +

k∗2(τ2,X(τ2))
η2(τ2)

)
+ U

(
q∗2(τ2,X(τ2))

h2(τ2)

))
.

Finally, from the fourth term we get that

1{τ1∨τ2>T}e
−δTU(X(T )) =

(
1{T1=τ2≤T<τ1} + 1{T<T1=τ2<τ1}

)
e−δTU(X(T ))

+
(
1{T1=τ1≤T<τ2} + 1{T<T1=τ1<τ2}

)
e−δTU(X(T )). (5.12)

Substitute equations (5.10), (5.11) and (5.12) in J(t, x;π) from equation (5.9) to obtain

J(t, x;π) = Et

[∫ T1∧T

t
w1e

−δsU (c̄1(s,X(s))) ds+

∫ T1∧T

t
w2e

−δsU (c̄2(s,X(s))) ds

+ 1{T1=τ2<τ1,T1≤T}

∫ τ1∧T

T1

w1e
−δsU (c∗1(s,X(s))) ds

+ 1{T1=τ1<τ2,T1≤T}

∫ τ2∧T

T1

w2e
−δsU (c∗2(s,X(s))) ds

+ w31{T1=τ2<τ1≤T}e
−δτ1

(
U

(
X (τ1) +

k∗1 (τ1, X (τ1))

η1 (τ1)

)
+ U

(
q∗1 (τ1, X (τ1))

h1 (τ1)

))

+ w31{T1=τ1<τ2≤T}e
−δτ2

(
U

(
X (τ2) +

k∗2 (τ2, X (τ2))

η2 (τ2)

)
+ U

(
q∗2 (τ2, X (τ2))

h2 (τ2)

))
+ w4

(
1{T1=τ2≤T<τ1} + 1{T<T1=τ2<τ1}

)
e−δTU(X(T ))

+ w4

(
1{T1=τ1≤T<τ2} + 1{T<T1=τ1<τ2}

)
e−δTU(X(T ))

]
.
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Rearrange terms in the last identity we get

J(t, x;π) =Et

[∫ T1∧T

t
w1e

−δsU (c̄1(s,X(s))) ds+

∫ T1∧T

t
w2e

−δsU (c̄2(s,X(s))) ds

+ 1{T1=τ2<τ1,T1≤T}

(∫ τ1∧T

T1

w1e
−δsU (c∗1(s,X(s))) ds

+ w31{τ1≤T}e
−δτ1

(
U

(
X (τ1) +

k∗1 (τ1, X (τ1))

η1 (τ1)

)
+ U

(
q∗1 (τ1, X (τ1))

h1 (τ1)

))
+ w41{τ1>T}e

−δTU(X(T ))

)
+ 1{T1=τ1<τ2,T1≤T}

(∫ τ2∧T

T1

w2e
−δsU (c∗2(s,X(s))) ds

+ w31{τ2≤T}e
−δτ2

(
U

(
X (τ2) +

k∗2 (τ2, X (τ2))

η2 (τ2)

)
+ U

(
q∗2 (τ2, X (τ2))

h2 (τ2)

))
+ w41{τ2>T}e

−δTU(X(T ))

)
+
{
1{T<T1=τ2<τ1} + 1{T<T1=τ1<τ2}

}
w4e

−δTU(X(T ))

]
.

Based on equation (4.1) J(t, x;π) become

J(t, x;π) = Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+ 1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)
(5.13)

+ 1{T1=τ1<τ2,T1≤T}V2

(
T1, X (T1) +

k̄1 (T1, X (T1))

η1 (T1)
+

q̄1 (T1, X (T1))

h1 (T1)

)
+

{
1{T<T1=τ2<τ1} + 1{T<T1=τ1<τ2}

}
w4e

−δTU(X(T ))

]
.

The first part of equation (5.13) can be written as

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[
1{t<T1≤T}

∫ T1

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+ 1{T1>T}

∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.
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Using the conditional probability function FT1(s; t) from equation (3.7) and the corre-

sponding conditional density function fT1(s; t), the last expectation becomes

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t
fT1(z; t)dz

∫ z

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+

(
1−

∫ T

t
fT1(z; t)dz

)∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

(5.14)

By the Fubini-Tonelli Theorem 2.40, and since

fT1(z; t)e
−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
≥ 0,

the order of integration can be interchanged as∫ T

t
fT1(z; t)dz

∫ z

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

=

∫ T

t

∫ z

t
fT1(z; t)e

−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
dsdz

=

∫ T

t

∫ T

s
fT1(z; t)e

−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
dzds

=

∫ T

t

(∫ T

s
fT1(z; t)dz

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds.

Now substitute the above equation in equation (5.14) we get

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t

(∫ T

s
fT1(z; t)dz

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+

(
1−

∫ T

t
fT1(z; t)dz

)∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

Using equation (5.2) in Lemma 5.1, we get

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t

(∫ T

s

fT1(z)

1− FT1(t)
dz

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+

(
1−

∫ T

t

fT1(z)

1− FT1(t)
dz

)∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.
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Since 1− FT1(t) doesn’t depend on z, it follows that

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t

(∫ T
s fT1(z)dz

1− FT1(t)

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+

(
1−

∫ T
t fT1(z)dz

1− FT1(t)

)∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

As we mentioned previously, fT1 is the density function of FT1 so we rewrite the last

expectation as

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t

(
FT1(T )− FT1(s)

1− FT1(t)

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

+

(
1− FT1(T )− FT1(t)

1− FT1(t)

)∫ T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

Rearrange terms we get

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[ ∫ T

t

(
FT1(T )− FT1(s) + 1− FT1(t)− FT1(T ) + FT1(t)

1− FT1(t)

)
e−δs

×
(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

These computations lead to

Et

[ ∫ T1∧T

t
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
= Et

[∫ T

t

(
1− FT1(s)

1− FT1(t)

)
e−δs

(
w1U (c̄1(s,X(s))) + w2U (c̄2(s,X(s)))

)
ds

]
.

(5.15)

Now, the second part of equation (5.13) can be written as

Et

[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
= Et

[ {
1{τ2≤T,τ1>T} + 1{τ2≤τ1≤T}

}
V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
.
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Based on the conditional probability function F (s1, s2; t) from equation (3.8) and the

corresponding conditional density function f(s1, s2; t) we write

Et

[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
= Et

[ ∫ T

t

(∫ ∞

T
f(s, z; t)ds

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

+

∫ T

t

(∫ T

z
f(s, z; t)ds

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

]
.

Using equation (5.3) in Lemma 5.1, we get

Et

[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
= Et

[ ∫ T

t

(∫ ∞

T

f (s, z)

1− FT1(t)
ds

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

+

∫ T

t

(∫ T

z

f (s, z)

1− FT1(t)
ds

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

]
.

Since 1− FT1(t) doesn’t depend on s we obtain

Et

[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
= Et

[ ∫ T

t

(∫∞
T f (s, z) ds

1− FT1(t)

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz (5.16)

+

∫ T

t

(∫ T
z f (s, z) ds

1− FT1(t)

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

]
.

Combining the integrals as∫ ∞

z
f (s, z) ds =

∫ T

z
f (s, z) ds+

∫ ∞

T
f (s, z) ds,

to rewrite equation (5.16) as

Et

[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X (T1) +

k̄2 (T1, X (T1))

η2 (T1)
+

q̄2 (T1, X (T1))

h2 (T1)

)]
= Et

[ ∫ T

t

(∫∞
z f(s, z)ds

1− FT1(t)

)
V1

(
z,X(z) +

k̄2(z,X(z))

η2(z)
+

q̄2(z,X(z))

h2(z)

)
dz

]
.

(5.17)

The third part of equation (5.13) is similar to second part, thus,

Et

[
1{T1=τ1<τ2,T1≤T}V2

(
T1, X (T1) +

k̄1 (T1, X (T1))

η1 (T1)
+

q̄1 (T1, X (T1))

h1 (T1)

)]
= Et

[ ∫ T

t

(∫∞
s f(s, z)dz

1− FT1(t)

)
V2

(
s,X(s) +

k̄1(s,X(s))

η1(s)
+

q̄1(s,X(s))

h1(s)

)
ds

]
.

(5.18)
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Finally, the fourth part of equation (5.13) can be written as

Et

[
w41{T<T1=τ2<τ1}e

−δTU(X(T )) + w41{T<T1=τ1<τ2}e
−δTU(X(T ))

]
= Et

[
w41{T<τ2<τ1}e

−δTU(X(T )) + w41{T<τ1<τ2}e
−δTU(X(T ))

]
.

Based on the conditional probability function F (s1, s2; t) from equation (3.8) and the

corresponding conditional density function f(s1, s2; t), it follows that

Et

[
w41{T<T1=τ2<τ1}e

−δTU(X(T )) + w41{T<T1=τ1<τ2}e
−δTU(X(T ))

]
= Et

[
w4e

−δTU(X(T ))

∫ ∞

T

∫ ∞

z
f(s, z; t)ds dz

+ w4e
−δTU(X(T ))

∫ ∞

T

∫ ∞

s
f(s, z; t)dz ds

]
.

Using equation (5.3) in Lemma 5.1, we get

Et

[
w41{T<T1=τ2<τ1}e

−δTU(X(T )) + w41{T<T1=τ1<τ2}e
−δTU(X(T ))

]
= Et

[
w4e

−δTU(X(T ))

∫ ∞

T

∫ ∞

z

f(s, z)

1− FT1(t)
ds dz

+ w4e
−δTU(X(T ))

∫ ∞

T

∫ ∞

s

f(s, z)

1− FT1(t)
dz ds

]
.

Since 1− FT1(t) doesn’t depend on s nor z then

Et

[
w41{T<T1=τ2<τ1}e

−δTU(X(T )) + w41{T<T1=τ1<τ2}e
−δTU(X(T ))

]
= Et

[
w4e

−δTU(X(T ))

1− FT1(t)

∫ ∞

T

∫ ∞

z
f(s, z)ds dz

+
w4e

−δTU(X(T ))

1− FT1(t)

∫ ∞

T

∫ ∞

s
f(s, z)dz ds

]
.

Hence,

Et

[
w41{T<T1=τ2<τ1}e

−δTU(X(T )) + w41{T<T1=τ1<τ2}e
−δTU(X(T ))

]
= Et

[
1− FT1(T )

1− FT1(t)
w4e

−δTU(X(T ))

]
.

(5.19)

Substituting equations (5.15), (5.17), (5.18) and (5.19) in equation (5.13) we obtain

equation (5.8), and conclude the proof.
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The previous lemma is the transformation of the control problem in equation (3.14) into

a one with a fixed planning horizon, using the tower rules of conditional expectations.

5.3 Hamilton–Jacobi–Bellman equation (HJB)

In this section, we will use Lemma 5.2 to derive first a DPP , and after that we will

derive the corresponding HJB equation modeling the problem with all controls before

first death. To proceed we assume

J̃(t, x;π) = (1− FT1(t)) J(t, x;π). (5.20)

Then

Ṽ (t, x) = sup
π

J̃(t, x;π) = (1− FT1(t))V (t, x), (5.21)

where J̃(t, x;π) denotes the conditional expectation of running and terminal reward

functions. Based on equations (5.20) and (5.21) we will introduce the next lemma.

Lemma 5.3. (DPP) For 0 ≤ t < s < T , the maximum expected utility Ṽ (t, x) satisfies

the recursive relation

Ṽ (t, x) = sup
π∈A(t,x)

Et

[
Ṽ (s,Xπ

t,x(s))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.

Proof. For any π ∈ A(t, x) with the corresponding wealth Xπ
t,x(·), Lemma 5.2 provides

that

J(t, x;π(·)) =
1

1− FT1(t)
Et

[ ∫ T

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ T

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ T

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

+ (1− FT1(T ))w4e
−δTU(X(T ))

]
.
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Substitute the above equation in equation (5.20) to get

J̃(t, x;π(·)) = Et

[ ∫ T

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ T

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ T

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

+ (1− FT1(T ))w4e
−δTU(X(T ))

]
.

For any 0 ≤ t < s < T , the above equation becomes

J̃(t, x;π(·)) = Et

[ ∫ T

s
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ T

s

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ T

s

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

+ (1− FT1(T ))w4e
−δTU(X(T ))

]
.

Rearrange the above equation we obtain

J̃(t, x;π(·)) = Et

[(∫ T

s
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ T

s

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ T

s

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

+ (1− FT1(T ))w4e
−δTU(Xπ

t,x(T ))

)

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.
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The last identity simplifies to

J̃(t, x;π(·)) = Et

[
J̃(s,Xπ

t,x(s);π(·))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.

Using equation (5.21) we obtain

J̃(t, x;π(·)) = Et

[
J̃(s,Xπ

t,x(s);π(·))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.

≤ Et

[
Ṽ (s,Xπ

t,x(s)))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.

Note that since π(·) =
(
c̄1(·), c̄2(·), k̄1(·), k̄2(·), q̄1(·), q̄2(·), ū(·)

)
is arbitrary, it follows

that

Ṽ (t, x)) ≤ sup
π∈A(t,x)

Et

[
Ṽ (s,Xπ

t,x(s))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz (5.22)

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.
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Conversely given that π(·) ∈ A(t, x), for ϵ > 0 and ω ∈ Ω, using property of supremum

there exists

L ≡
(
c̄1,ω,ϵ(·), c̄2,ω,ϵ(·), k̄1,ω,ϵ(·), k̄2,ω,ϵ(·), q̄1,ω,ϵ(·), q̄2,ω,ϵ(·), ūω,ϵ(·)

)
∈ A

(
s,Xπ

t,x(s, ω)
)
,

where

J̃
(
s,Xπ

t,x(s);Lω,ϵ(·)
)
≥ Ṽ

(
s,Xπ

t,x(s)
)
− ϵ.

Let

L∗(u) :=


(
c̄1(·), c̄2(·), k̄1(·), k̄2(·), q̄1(·), q̄2(·), ū(·)

)
, if u ∈ [t, s],

Lω,ϵ(u), if u ∈ [s, T ].

Notice that XL∗
t,x (T ) = X

Lω,c

s,Xπ
t,x(s)

(T ) a.s., then

V̄ (t, x) ≥ J̃ (t, x;L∗(·)) .

Thus,

Et

[(∫ T

s
(1− FT1(u)) e

−δu

(
w1U (c̄1,ω,ϵ(u)) + w2U (c̄2,ω,ϵ(u))

)
du

+

∫ T

s

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2,ω,ϵ(z)

η2(z)
+

q̄2,ω,ϵ(z)

h2(z)

)
dz

+

∫ T

s

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1,ω,ϵ(u)

η1(u)
+

q̄1,ω,ϵ(u)

h1(u)

)
du

+ (1− FT1(T ))w4e
−δTU(X

Lω,c

s,Xπ
t,x(s)

(T ))

)

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
≥ Et

[
Ṽ
(
s,Xπ

t,x(s)
)
− ϵ

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.
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The above inequality holds for any π(·) ∈ A(t, x) and ϵ > 0, then

Ṽ (t, x)) ≤ sup
π∈A(t,x)

Et

[
Ṽ (s,Xπ

t,x(s))

+

∫ s

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ s

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ s

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
. (5.23)

Finally, we can get DPP from inequalities (5.22) and (5.23).

Now, we will use the DPP obtained in previous lemma to derived the following HJB

equation.

Theorem 5.4. (HJB-Equation) Suppose that the maximum expected utility Ṽ (t, x) ∈
C1,2([0, T ]× R,R). Then Ṽ (t, x) must satisfies the HJB equation

Ṽt(t, x) + sup
(c̄1,c̄2,k̄1k̄2,q̄1q̄2,ū)

H(t, x;π(·)) = 0, (t, x) ∈ [0, T ]× R,

Ṽ (T, x) = (1− FT1(T ))w4e
−δTU(X(T )), x ∈ R,

where the Hamilltonian function H is given by

H(t, x;π(·)) = 1

2
σ2(t)ū2Ṽxx + e−δt (1− FT1(t)) (w1U (c̄1) + w2U (c̄2)) + Ṽx(t, x)

×
(
r(t)x+ (µ(t)− r(t))ū− c̄1 − k̄1 − q̄1 + I1(t) −c̄2 − k̄2 − q̄2 + I2(t)

)
+ V1

(
t, x+

k̄2
η2(t)

+
q̄2

h2(t)

)∫ ∞

t
f(s, t)ds

+ V2

(
t, x+

k̄1
η1(t)

+
q̄1

h1(t)

)∫ ∞

t
f(t, z)dz,

Ṽt and Ṽx denote first-order partial derivatives with respect to t and x, respectively, and

Ṽxx denotes a second-order derivative with respect to x. Moreover,

π∗(·) =
(
c̄∗1(·), c̄∗2(·), k̄∗1(·), k̄∗2(·), q̄∗1(·), q̄∗2(·), ū∗(·)

)
∈ A(t, x),

whose wealth X∗ is optimal if and if for s ∈ [t, T ] we have

Ṽt (s,X
∗(s)) +H (s,X∗(s);π∗) = 0.
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Proof. Apply s = t + h in the DPP from Lemma 5.3. By Itô’s formula Theorem 2.56,

we can get

Ṽ (t+ h,X(t+ h)) = Ṽ (t, x) +

∫ t+h

t

(
Ṽt(s,X(s)) + Ṽx(s,X(s))

×

(
r(s)X(s) + (µ(s)− r(s)) ū(s) +

2∑
i=1

(
−c̄i(s)− k̄i(s)− q̄i(s) + Ii(s)

))
(5.24)

+
1

2
Ṽxx(s,X(s))σ2(s)ū2(s)

)
ds+

∫ t+h

t
Ṽx(s,X(s))σ(s)ū(s)dW (s).

Using Lemma 5.3 we get

0 = sup
π∈A(t,x)

Et

[
Ṽ (t+ h,X(t+ h))− Ṽ (t, x)

+

∫ t+h

t
(1− FT1(u)) e

−δu

(
w1U (c̄1(u)) + w2U (c̄2(u))

)
du

+

∫ t+h

t

(∫ ∞

z
f(u, z)du

)
V1

(
z,X(z) +

k̄2(z)

η2(z)
+

q̄2(z)

h2(z)

)
dz

+

∫ t+h

t

(∫ ∞

u
f(u, z)dz

)
V2

(
u,X(u) +

k̄1(u)

η1(u)
+

q̄1(u)

h1(u)

)
du

]
.

Now substitute equation (5.24) into the above equation and let h goes to zero to obtain

0 = sup
π∈A(t,x)

Et

[
Ṽt(t, x) + Ṽx(t, x)

×

(
r(t)X(t) + (µ(t)− r(t)) ū(t) +

2∑
i=1

(
−c̄i(t)− k̄i(t)− q̄i(t) + Ii(t)

))

+
1

2
Ṽxx(t,X(t))σ2(t)ū2(t)

)
+ (1− FT1(t)) e

−δt

(
w1U (c̄1(t)) + w2U (c̄2(t))

)
+

(∫ ∞

t
f(s, t)ds

)
V1

(
t,X(t) +

k̄2(t)

η2(t)
+

q̄2(t)

h2(t)

)
+

(∫ ∞

t
f(t, z)dz

)
V2

(
t,X(t) +

k̄1(t)

η1(t)
+

q̄1(t)

h1(t)

)]
.

Since Ṽt(t, x) doesn’t depend on π, the first part of HJB theorem holds. Now, the proof

of the second part of the HJB theorem, is similar to proof of equation (4.10) in Theorem

4.4. This completes the proof.
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5.4 Explicit solution

In this section, we will find an explicit solution for the (HJB) equation (5.4) in some

possible cases. To solve the HJB equation (5.4) and derive the corresponding optimal

strategies, we assume a power utility function

U(x) =
xγ

γ
, (5.25)

where γ < 1.

For problem before the first death, we will determine Ṽ (t, x) which has the form

Ṽ (t, x) =
A(t)

γ
(x+B(t))γ . (5.26)

Substitute Ṽ (t, x) from equation (5.26) in equation (5.21) and solve for V (t, x) we get

V (t, x) =
A(t)

γ [1− FT1(t)]
(x+B(t))γ . (5.27)

The previous function is ansatz function, we will use it in the next results in order to

derive an explicit solution.

Unfortunately, it is difficult for us to solve theHJB equation from Theorem 5.4 explicitly

when life-insurance and welfare parameters are all control variables. Therefore, we will

try to find an explicit solution for following cases

• Case 1: No life-insurance contracts.

• Case 2: No Welfare policy contracts.

• Case 3: Life-insurance is not being control variable.

• Case 4: Welfare policy is not being control variable.

5.4.1 CASE 1: No life-insurance contracts

In this section, we assume no life-insurance contracts available, that is, k̄1 = k̄2 = 0, we

can derived an explicit solutions for the other controls.

The following proposition is an explicit solution of the first case.
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Proposition 5.2. Assume k̄1 = k̄2 = 0, U(·) is as given in equation (5.25). Conditions

of Lemma 5.2 hold, and the value function V (t, x) is as given in equation (5.27).

Then the optimal strategies are given by

c̄i(t, x) =

(
eδt

(1−FT1
(t))wi

) 1
γ−1

1
D(t)(x+B(t)), i = 1, 2,

ū(t, x) = − µ(t)−r(t)
(γ−1)σ2(t)

(x+B(t)),

q̄1(t, x) = h1(t)

((
eδth1(t)∫∞

t f(t,z)dz

) 1
γ−1 × l2(t)

D(t)(x+B(t))− x− b2(t)

)
,

q̄2(t, x) = h2(t)

((
eδth2(t)∫∞

t f(s,t)ds

) 1
γ−1 × l1(t)

D(t)(x+B(t))− x− b1(t)

)
,

where

D(t) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds,

B(t) =

∫ T

t
e−

∫ s
t (r(z)+h1(z)+h2(z))dz (I1(s) + I2(s) + h1(s)b2(s) + h2(s)b1(s)) ds,

H(t) =
1

1− γ

(
1

2

(µ(t)− r(t))2γ

(γ − 1)σ2(t)
− γ (r(t) + h1(t) + h2(t))

)
,

G(t) =e
δt

γ−1

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz

+

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

Proof. From HJB Theorem 5.4, H is being maximum at π∗, so

sup
(c̄1,c̄2,q̄1,q̄2,ū)∈(R+)5

H(t, x; c̄1, c̄2, q̄1, q̄2, ū)

= sup
(c̄1,c̄2)∈R+

{
e−δt (1− FT1(t))w1U (c̄1(t, x))− c̄1(t, x)Ṽx(t, x)

}
+e−δt (1− FT1(t))w2U (c̄2(t, x))− c̄2(t, x)Ṽx(t, x)

}
+ sup

(q̄1,q̄2)∈R+

{
V1

(
t, x+

q̄2(t)

h2(t)

)∫ ∞

t
f(s, t)ds− q̄2(t)Ṽx(t, x) (5.28)

+V2

(
t, x+

q̄1(t)

h1(t)

)∫ ∞

t
f(t, z)dz − q̄1(t)Ṽx(t, x)

}
+ sup

ū∈R+

{
1

2
σ2(t)ū2(t, x)Ṽxx(t, x) + (µ(t)− r(t))ū(t, x)Ṽx(t, x)

}
+(r(t)x+ I1(t) + I2(t)) Ṽx(t, x).
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Substitute the value of power utility function (5.25) in equation (5.28), and derive H
with respect the variables c̄∗1, c̄

∗
2 and ū∗, respectively, we obtain that

e−δt (1− FT1(t))wic̄
∗
i (t, x)

γ−1 − Ṽx(t, x) = 0, i = 1, 2,

σ2(t)ū∗(t, x)Ṽxx(t, x) + (µ(t)− r(t))Ṽx(t, x) = 0.

Rearrange the above equations for c̄∗i , i = 1, 2, and ū∗, respectively, we get

c̄∗i (t, x) =

(
eδtṼx(t, x)

(1− FT1(t))wi

) 1
γ−1

, i = 1, 2,

ū∗(t, x) = −(µ(t)− r(t))Ṽx(t, x)

σ2(t)Ṽxx(t, x)
.

(5.29)

Now, to obtain an optimal welfare purchase strategies, we can considered the bivariate

function ϕ for q̄i(t, x), i = 1, 2

ϕ (q̄1, q̄2) = − (q̄1 + q̄2) Ṽx(t, x)

+ V1

(
t, x+

q̄2
h2(t)

)
×
∫ ∞

t
f(s, t)ds

+ V2

(
t, x+

q̄1
h1(t)

)
×
∫ ∞

t
f(t, z)dz.

Now, apply the value function defined in the Theorem 4.6 to get

ϕ (q̄1, q̄2) = − (q̄1 + q̄2) Ṽx(t, x)

+
1

γ
e−δtl1−γ

1 (t)

(
x+

q̄2
h2(t)

+ b1(t)

)γ

×
∫ ∞

t
f(s, t)ds (5.30)

+
1

γ
e−δtl1−γ

2 (t)

(
x+

q̄1
h1(t)

+ b2(t)

)γ

×
∫ ∞

t
f(t, z)dz.

Let us compute the first partial derivatives of ϕ (q̄1, q̄2) from equation (5.30) to get

ϕq̄1 (q̄1, q̄2) = −Ṽx(t, x) +
e−δt

h1(t)
l1−γ
2 (t)

(
x+

q̄1
h1(t)

+ b2(t)

)γ−1

×
∫ ∞

t
f(t, z)dz,

ϕq̄2 (q̄1, q̄2) = −Ṽx(t, x) +
e−δt

h2(t)
l1−γ
1 (t)

(
x+

q̄2
h2(t)

+ b1(t)

)γ−1

×
∫ ∞

t
f(s, t)ds.
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From the above first partial derivatives, we can compute the follows second partial

derivatives

ϕq̄1q̄1 (q̄1, q̄2) =
γ − 1

(h1(t))2
e−δtl1−γ

2 (t)

(
x+

q̄1
h1(t)

+ b2(t)

)γ−2

×
∫ ∞

t
f(t, z)dz,

ϕq̄2q̄2 (q̄1, q̄2) =
γ − 1

(h2(t))2
e−δtl1−γ

1 (t)

(
x+

q̄2
h2(t)

+ b1(t)

)γ−2

×
∫ ∞

t
f(s, t)ds, (5.31)

ϕq̄1q̄2 (q̄1, q̄2) = 0.

We mentioned previously the γ < 1, that is

γ < 1. (5.32)

From (5.31) and (5.32), we can conclude that

ϕq̄1q̄1 (q̄1, q̄2) < 0, (5.33)

and

ϕq̄2q̄2 (q̄1, q̄2) < 0. (5.34)

Thus,

ϕq̄1q̄1 (q̄1, q̄2)ϕq̄2q̄2 (q̄1, q̄2)− (ϕq̄1q̄2 (q̄1, q̄2))
2 > 0. (5.35)

Thus, based on Theorem 2.41, from (5.33),(5.34) and (5.35), then ϕ (q̄1, q̄2) admits its

maximum at (q̄∗1, q̄
∗
2), which solves the equation

ϕq̄1 (q̄
∗
1, q̄

∗
2) = ϕq̄2 (q̄

∗
1, q̄

∗
2) = 0. (5.36)

Based on identity (5.36) we see that

(
x+

q̄∗1
h1(t)

+ b2(t)

)γ−1

=
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

,(
x+

q̄∗2
h2(t)

+ b1(t)

)γ−1

=
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

.

(5.37)

Rearranging the above equation, we get

q̄∗1
h1(t)

= − (x+ b2(t)) +

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) 1
γ−1

,

q̄∗2
h2(t)

= − (x+ b1(t)) +

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) 1
γ−1

.

85



Thus,

q̄∗1 = −h1(t) (x+ b2(t)) + h1(t)

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) 1
γ−1

,

q̄∗2 = −h2(t) (x+ b1(t)) + h2(t)

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) 1
γ−1

.

(5.38)

Now, substitute (5.37) in (5.30) to get

ϕ (q̄∗1, q̄
∗
2) =− (q̄∗1 + q̄∗2) Ṽx(t, x)

+
1

γ
e−δtl1−γ

1 (t)

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) γ
γ−1

×
∫ ∞

t
f(s, t)ds

+
1

γ
e−δtl1−γ

2 (t)

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) γ
γ−1

×
∫ ∞

t
f(t, z)dz.

Substitute (5.38) in above equation to get

ϕ (q̄∗1, q̄
∗
2) = h1(t) (x+ b2(t)) Ṽx(t, x)− h1(t)

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) 1
γ−1

Ṽx(t, x)

+ h2(t) (x+ b1(t)) Ṽx(t, x)− h2(t)

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) 1
γ−1

Ṽx(t, x)

+
1

γ
e−δtl1−γ

1 (t)

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) γ
γ−1

×
∫ ∞

t
f(s, t)ds

+
1

γ
e−δtl1−γ

2 (t)

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) γ
γ−1

×
∫ ∞

t
f(t, z)dz.

Rearrange the above terms to obtain

ϕ (q̄∗1, q̄
∗
2) = (h1 (x+ b2(t)) + h2 (x+ b1(t))) Ṽx(t, x)

− h1

(
eδtṼx(t, x)h1(t)

l1−γ
2 (t)

∫∞
t f(t, z)dz

) 1
γ−1

Ṽx(t, x)

− h2

(
eδtṼx(t, x)h2(t)

l1−γ
1 (t)

∫∞
t f(s, t)ds

) 1
γ−1

Ṽx(t, x)

+ e
δt

γ−1

(
Ṽx(t, x)h2(t)

) γ
γ−1

(∫ ∞

t
f(s, t)ds

) 1
1−γ l1(t)

γ

+ e
δt

γ−1

(
Ṽx(t, x)h1(t)

) γ
γ−1

(∫ ∞

t
f(t, z)dz

) 1
1−γ l2(t)

γ
.
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Simplify the above equation to get

ϕ (q̄∗1, q̄
∗
2) = (h1 (x+ b2(t)) + h2 (x+ b1(t))) Ṽx(t, x)

− e
δt

γ−1

(
Ṽx(t, x)h1(t)

) γ
γ−1

(∫ ∞

t
f(t, z)dz

) 1
1−γ

l2(t)

− e
δt

γ−1

(
Ṽx(t, x)h2(t)

) γ
γ−1

(∫ ∞

t
f(s, t)ds

) 1
1−γ

l1(t)

+ e
δt

γ−1

(
Ṽx(t, x)h2(t)

) γ
γ−1

(∫ ∞

t
f(s, t)ds

) 1
1−γ l1(t)

γ

+ e
δt

γ−1

(
Ṽx(t, x)h1(t)

) γ
γ−1

(∫ ∞

t
f(t, z)dz

) 1
1−γ l2(t)

γ
.

Rearrange the above terms we get

ϕ (q̄∗1, q̄
∗
2) = (h1 (x+ b2(t)) + h2 (x+ b1(t))) Ṽx(t, x)− e

δt
γ−1

(
1− 1

γ

)
Ṽ

γ
γ−1
x (t, x)

×

((
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz (5.39)

+

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

Substitute (5.29) and (5.39) in HJB equation from Theorem 5.4, to obtain

0 = Ṽt(t, x) + (r(t)x+ I1(t) + I2(t)) Ṽx(t, x)−
1

2

(µ(t)− r(t))2Ṽ 2
x (t, x)

σ2(t)Ṽxx

+
1− γ

γ

(
eδt

1− FT1(t)

) 1
γ−1

Ṽ
γ

γ−1
x (t, x)

(
w

1
1−γ

1 + w
1

1−γ

2

)
+ (h1 (x+ b2(t)) + h2 (x+ b1(t))) Ṽx(t, x)

−

((
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz +

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)

× e
δt

γ−1

(
1− 1

γ

)
Ṽ

γ
γ−1
x (t, x).

Thus,

0 = Ṽt(t, x) + (r(t)x+ I1(t) + I2(t) + h1 (x+ b2(t)) + h2 (x+ b1(t)))× Ṽx(t, x)

− 1

2

(µ(t)− r(t))2Ṽ 2
x (t, x)

σ2(t)Ṽxx

+ e
δt

γ−1

(
1

γ
− 1

)
Ṽ

γ
γ−1
x (t, x)×

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz +

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

87



To make this simple consider

G(t) = e
δt

γ−1

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz

+

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

So the HJB equation will become

0 = Ṽt(t, x) + (r(t)x+ I1(t) + I2(t) + h1 (x+ b2(t)) + h2 (x+ b1(t)))× Ṽx(t, x)

− 1

2

(µ(t)− r(t))2Ṽ 2
x (t, x)

σ2(t)Ṽxx(t, x)
+

(
1

γ
− 1

)
Ṽ

γ
γ−1
x (t, x)G(t), (5.40)

with the terminal condition

Ṽ (T, x) = (1− FT1(T ))w4e
−δTU(X(T )).

Let us compute the partial derivatives Ṽt, Ṽx and Ṽxx from ansatz function (5.26) to get

Ṽt(t, x) =
At(t)

γ
(x+B(t))γ +A(t)Bt(t)(x+B(t))γ−1,

Ṽx(t, x) = A(t)(x+B(t))γ−1,

Ṽxx(t, x) = (γ − 1)A(t)(x+B(t))γ−2.

Substitute the above partial derivatives in equation (5.40) to get that

0 =
At(t)

γ
(x+B(t))γ +A(t)Bt(t)(x+B(t))γ−1

+ (r(t)x+ I1(t) + I2(t) + h1 (x+ b2(t)) + h2 (x+ b1(t)))A(t)(x+B(t))γ−1

− 1

2

(µ(t)− r(t))2

σ2(t)
× A2(t)(x+B(t))2(γ−1)

(γ − 1)A(t)(x+B(t))γ−2

+

(
1

γ
− 1

)
A

γ
γ−1 (t)× (x+B(t))γG(t).

That is,

0 =
At(t)

γ
(x+B(t))γ +A(t)Bt(t)(x+B(t))γ−1

+ (r(t)x+ I1(t) + I2(t) + h1 (x+ b2(t)) + h2 (x+ b1(t)))A(t)(x+B(t))γ−1

− 1

2

(µ(t)− r(t))2

σ2(t)
× A(t)(x+B(t))γ

γ − 1

+

(
1

γ
− 1

)
A

γ
γ−1 (t)× (x+B(t))γG(t).
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Divide the last equation by (x+B(t))γ

0 =
At(t)

γ
+

A(t)Bt(t)

(x+B(t))

+ (r(t)x+ I1(t) + I2(t) + h1 (x+ b2(t)) + h2 (x+ b1(t)))
A(t)

(x+B(t))

− 1

2

(µ(t)− r(t))2

σ2(t)
× A(t)

(γ − 1)
+

(
1

γ
− 1

)
A

γ
γ−1 (t)G(t).

Adding and subtracting the terms r(t)A(t)B(t)
x+B(t) , h1(t)A(t)B(t)

x+B(t) and h2(t)A(t)B(t)
x+B(t) to the above

equation, to obtain

0 =
At(t)

γ
+

A(t)Bt(t)

(x+B(t))

+
r(t)xA(t)

(x+B(t))
+

r(t)A(t)B(t)

(x+B(t))
− r(t)A(t)B(t)

(x+B(t))

+
h1xA(t)

(x+B(t))
+

h1(t)A(t)B(t)

(x+B(t))
− h1(t)A(t)B(t)

(x+B(t))

+
h2xA(t)

(x+B(t))
+

h2(t)A(t)B(t)

(x+B(t))
− h2(t)A(t)B(t)

(x+B(t))

+
I1(t)A(t)

(x+B(t))
+

I2(t)A(t)

(x+B(t))
+

h1b2(t)A(t)

(x+B(t))
+

h2b1(t)A(t)

(x+B(t))

− 1

2

(µ(t)− r(t))2

σ2(t)
× A(t)

(γ − 1)
+

(
1

γ
− 1

)
A

γ
γ−1 (t)G(t).

Note that the above differential equation can be separated into two independent bound-

ary value problems for A and B as follows

0 =
At(t)

γ
+

r(t)A(t)(x+B(t))

(x+B(t))
+

h1A(t)(x+B(t))

(x+B(t)
+

h2A(t)(x+B(t))

(x+B(t))

− 1

2

(µ(t)− r(t))2

σ2(t)
× A(t)

(γ − 1)
+

(
1

γ
− 1

)
A

γ
γ−1 (t)G(t), (5.41)

and

0 =
A(t)Bt(t)

(x+B(t))
− r(t)A(t)B(t)

(x+B(t))
− h1(t)A(t)B(t)

(x+B(t))
− h2(t)A(t)B(t)

(x+B(t))

+
I1(t)A(t)

(x+B(t))
+

I2(t)A(t)

(x+B(t))
+

h1b2(t)A(t)

(x+B(t))
+

h2b1(t)A(t)

(x+B(t))
. (5.42)

After multiplying equation (5.41) by γ, and rearrange it we obtain that

0 = At(t) +

(
γ(r(t) + h1 + h2) +

(µ(t)− r(t))2γ

2σ2(t)(γ − 1)

)
A(t)

+ (1− γ)A
γ

γ−1 (t)G(t). (5.43)
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Let

H(t) =
1

1− γ

(
1

2

(µ(t)− r(t))2γ

(γ − 1)σ2(t)
− γ (r(t) + h1(t) + h2(t))

)
.

Identity (5.43) becomes{
At(t)− (1− γ)H(t)A(t) + (1− γ)A

γ
γ−1 (t)G(t) = 0,

At(T ) = (1− FT1(T ))w4e
−δT .

(5.44)

Also multiply equation (5.42) by (x+B(t))
A(t){

Bt(t)− (r(t) + h1(t) + h2(t))B(t) + I1(t) + I2(t) + h1(t)b2(t) + h2(t)b1(t) = 0,

Bt(T ) = 0.

(5.45)

To solve equation (5.44) we assume its solution has the form

A(t) = D1−γ(t). (5.46)

Differentiate A(t) in equation (5.46) with respect to time t, we get

At(t) = (1− γ)D−γ(t)Dt(t). (5.47)

Substitute (5.46) and (5.47) in equation (5.44) to obtain

(1− γ)D−γ(t)Dt(t)− (1− γ)H(t)D1−γ(t) + (1− γ)D−γ(t)G(t) = 0.

The above equation can be rewritten as

Dt(t)−H(t)D(t) +G(t) = 0, (5.48)

D(T ) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
.

Equation (5.48) is linear 1st order ODE, so we can solve it explicitly by using the

integrating factor method to get

D(t) = e−
∫ T
t H(s)ds

(∫ T

t
G(s)e−

∫ s
t H(z)dzds+ c1

)
.

Using the condition D(T ) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ we obtain

D(t) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds.
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Substitute the value of D(t) in (5.46) we get

A(t) =

((
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds

)1−γ

.

To find a solution for the boundary value problem (5.45), it is again 1st order linear

ODE and it can be solved also by the integrating factor method as

B(t) =

(∫ T

t
e
∫ s
T (r(z)+h1(z)+h2(z))dz (I1(s) + I2(s) + h1(s)b2(s) + h2(s)b1(s)) ds+ c2

)
× e

∫ t
T (r(z)+h1(z)+h2(z))dz.

Since B(T ) = 0, we get c2 = 0. Consequently,

B(t) =

∫ T

t
e−

∫ s
t [r(z)+h1(z)+h2(z)]dz (I1(s) + I2(s) + h1(s)b2(s) + h2(s)b1(s)) ds.

Substitute the value of function Ṽx(t, x) in equation (5.29) to get

c̄∗i (t, x) =

(
eδtA(t)(x+B(t))γ−1

(1− FT1(t))wi

) 1
γ−1

, i = 1, 2.

Substitute the value of A(t) from equation (5.46) to get

c̄∗i (t, x) =

(
eδt

(1− FT1(t))wi

) 1
γ−1 1

D(t)
(x+B(t)), i = 1, 2.

Substitute the value of Ṽx(t, x) and Ṽxx(t, x) in equation (5.29) we get

ū∗(t, x) = −(µ(t)− r(t))A(t)(x+B(t))γ−1

σ2(t)(γ − 1)A(t)(x+B(t))γ−2
.

Hence,

ū∗(t, x) = − µ(t)− r(t)

(γ − 1)σ2(t)
(x+B(t)).

Similarly, substitute the value of Ṽx(t, x) in equation (5.38) to get

q̄∗1(t, x) = −h1(t) (x+ b2(t)) + h1(t)

(
eδtA(t)(x+B(t))γ−1∫∞

t f(t, z)dz

h1(t)

l1−γ
2 (t)

) 1
γ−1

.

Thus,

q̄∗1(t, x) = h1(t)

((
eδth1(t)∫∞

t f(t, z)dz

) 1
γ−1

× l2(t)

D(t)
(x+B(t))− x− b2(t)

)
.
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Finally, we do the same for q̄∗2(x, t) to get

q̄∗2(t, x) = h2(t)

((
eδth2(t)∫∞

t f(s, t)ds

) 1
γ−1

× l1(t)

D(t)
(x+B(t))− x− b1(t)

)
.

This completes the proof.

From the Proposition 5.2, we conclude the following observations

• There is a relation between death times of the two wage-earners and optimal

strategies.

• We can assume that the human capital of the two wage-earners is B(t), and that

is mean their incomes affects on their decisions.

• The consumption and investment are increasing with respect to the human capital

of the two wage-earners.

• If the wife’s income higher than husband’s income, the two wage-earners would be

more motivated to buy Welfare for the wife.

5.4.2 CASE 2: No Welfare contracts

In the next proposition, we will do the same thing in previous Proposition 5.2, but when

q̄1 = q̄2 = 0, which means the model includes only life-insurance, consumption and

investment in the financial market. In this case the results will as follows.

Proposition 5.3. Assume q̄1 = q̄2 = 0, U(·) is given as in (5.25), the conditions of

Lemma 5.2 hold, and the value function V (t, x) is as given in (5.27).

Then the optimal strategies are given by

c̄i(t, x) =

(
eδt

(1−FT1
(t))wi

) 1
γ−1

1
D(t)(x+B(t)), i = 1, 2,

ū(t, x) = − µ(t)−r(t)
(γ−1)σ2(t)

(x+B(t)),

k̄1(t, x) = η1(t)

((
eδtη1(t)∫∞

t f(t,z)dz

) 1
γ−1 × l2(t)

D(t)(x+B(t))− x− b2(t)

)
,

k̄2(t, x) = η2(t)

((
eδtη2(t)∫∞

t f(s,t)ds

) 1
γ−1 × l1(t)

D(t)(x+B(t))− x− b1(t)

)
,
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where

D(t) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds,

B(t) =

∫ T

t
e−

∫ s
t (r(z)+η1(z)+η2(z))dz (I1(s) + I2(s) + η1(s)b2(s) + η2(s)b1(s)) ds,

H(t) =
1

1− γ

(
1

2

(µ(t)− r(t))2γ

(γ − 1)σ2(t)
− γ (r(t) + η1(t) + η2(t))

)
,

G(t) =e
δt

γ−1

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
η1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz

+

(
η2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

Proof. Similar to proof of Proposition 5.2.

5.4.3 CASE 3: Life-insurance is not being control variable

In this section, we assume life - insurance parameters are not control variables in order

to find an explicit solution for the other controls (welfare, consumption and investment

in the financial market).

The following proposition show an explicit solution when life-insurance parameters are

not control variables.

Proposition 5.4. Assume k̄1, k̄2 are not control variables, U(·) is as given in (5.25),

the conditions of Lemma 5.2 hold, and the value function V (t, x) is as given in (5.27).

Then the optimal strategies are given by

c̄i(t, x) =

(
eδt

(1−FT1
(t))wi

) 1
γ−1

1
D(t)(x+B(t)), i = 1, 2,

ū(t, x) = − µ(t)−r(t)
(γ−1)σ2(t)

(x+B(t)),

q̄1(t, x) = h1(t)

((
eδth1(t)∫∞

t f(t,z)dz

) 1
γ−1 × l2(t)

D(t)(x+B(t))− x− k̄1
η1(t)

− b2(t)

)
,

q̄2(t, x) = h2(t)

((
eδth2(t)∫∞

t f(s,t)ds

) 1
γ−1 × l1(t)

D(t)(x+B(t))− x− k̄2
η2(t)

− b1(t)

)
,
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where

D(t) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds,

B(t) =

∫ T

t
e−

∫ s
t (r(z)+h1(z)+h2(z))dz

×
(
I1(s) + I2(s)− k̄1(s)− k̄2(s) + h1(s)(b2(s) + k̄1(s)) + h2(s)(b1(s) + q̄2(s))

)
ds,

H(t) =
1

1− γ

(
1

2

(µ(t)− r(t))2γ

(γ − 1)σ2(t)
− γ (r(t) + h1(t) + h2(t))

)
,

G(t) =e
δt

γ−1

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
h1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz

+

(
h2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

Proof. The proof of this proposition is closely to the technique introduced in proof of

Proposition 5.2, by adding the corresponding updates that fit with our model.

For instance, to obtain an optimal welfare purchase strategies when k̄1, k̄2 are not control

variables, we can consider the bivariate function ϕ for q̄1, q̄2 as

ϕ (q̄1, q̄2) = − (q̄1 + q̄2) Ṽx(t, x)

+ V1

(
t, x+

k̄2
η2(t)

+
q̄2

h2(t)

)
×
∫ ∞

t
f(s, t)ds

+ V2

(
t, x+

k̄1
η1(t)

+
q̄1

h1(t)

)
×
∫ ∞

t
f(t, z)dz.

And we do the same as we did in Proposition 5.2.

5.4.4 CASE 4: Welfare policy is not being control variable

The next proposition is similar to the Proposition 5.4, but we assume the welfare pa-

rameters are not being control variables. In this case the results will be as follows.

Proposition 5.5. Assume q̄1, q̄2 are not control variables, U(·) is as given in (5.25),

the conditions of Lemma 5.2 hold, and the value function V (t, x) is as given in (5.27).

Then the optimal strategies are given by
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

c̄i(t, x) =

(
eδt

(1−FT1
(t))wi

) 1
γ−1

1
D(t)(x+B(t)), i = 1, 2,

ū(t, x) = − µ(t)−r(t)
(γ−1)σ2(t)

(x+B(t)),

k̄1(t, x) = η1(t)

((
eδtη1(t)∫∞

t f(t,z)dz

) 1
γ−1 × l2(t)

D(t)(x+B(t))− x− q̄1
h1(t)

− b2(t)

)
,

k̄2(t, x) = η2(t)

((
eδtη2(t)∫∞

t f(s,t)ds

) 1
γ−1 × l1(t)

D(t)(x+B(t))− x− q̄2
h2(t)

− b1(t)

)
,

where

D(t) =
(
(1− FT1(T ))w4e

−δT
) 1

1−γ
e−

∫ T
t H(s)ds +

∫ T

t
e−

∫ s
t H(z)dzG(s)ds,

B(t) =

∫ T

t
e−

∫ s
t (r(z)+η1(z)+η2(z))dz

× (I1(s) + I2(s)− q̄1(s)− q̄2(s) + η1(s)(b2(s) + q̄1(s)) + η2(s)(b1(s) + q̄2(s))) ds,

H(t) =
1

1− γ

(
1

2

(µ(t)− r(t))2γ

(γ − 1)σ2(t)
− γ (r(t) + η1(t) + η2(t))

)
,

G(t) =e
δt

γ−1

(
(1− FT1(t))

1
1−γ

(
w

1
1−γ

1 + w
1

1−γ

2

)
+

(
η1(t)∫∞

t f(t, z)dz

) γ
γ−1

l2(t)

∫ ∞

t
f(t, z)dz

+

(
η2(t)∫∞

t f(s, t)ds

) γ
γ−1

l1(t)

∫ ∞

t
f(s, t)ds

)
.

Proof. Similar to the proof of Proposition 5.4.
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Chapter 6

Conclusion

We have extended the work done by Wei et al [45] by allowing a two wage-earners to

contribute in the social security system in order to protect their families from risk in the

future.

We have studied an optimal control problem after the first death in Chapter 4, first we

have transformed the stochastic optimal control problem under consideration of the two

wage-earners to an equivalent one with fixed planning horizon, after that we have derived

a dynamic programming principle DPP and the corresponding the HJB equation. We

have characterized the optimal strategies, after the death of one wage-earner concerning

consumption, investment, life-insurance and social welfare policy using power utility

functions.

In Chapter 5, we have studied the optimal control problem before the first death when

the two wage-earners are contributing in the social security system while participating in

the life-insurance markets. We have used Copula model as stochastic mortality model for

dependent lives, to handle the stochastic optimal control problems under consideration.

First, we have transformed the stochastic optimal control problem of the two wage-

earners in which neither of them dies before the retirement date into a one with a

fixed planning horizon using the tower rules of conditional expectations. After that we

derived a DPP and subsequently we derived the corresponding HJB equation modeling

the problem with all controls before first death. Using power utility functions, we have

characterized the optimal strategies before the first death, in the following cases (no

life-insurance contracts, no welfare policy contracts, life-insurance is not being control
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variable and welfare policy is not being control variable). Under some conditions, we

have determined an explicit solutions for the optimal strategies in each case.

One possible case could be considered for a future work is when the life-insurance and

welfare parameters are all control variables before the first death. In this case, it will

be hard to derive an explicit solution analytically but numerical solution would be in-

teresting.
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